#33 Department of Hydroaeromechanics of Power Machines

Head of Department

Director of the Institute, Corresponding Member of the National Academy of Sciences of Ukraine

Doctor of Technical Sciences, Professor, Laureate of the State Prize of Ukraine in the fields of Science and Technology

Andrii V. Rusanov

E-mail: rusanov@ipmach.kharkov.ua

Deputy Head of Department

Candidate of Technical Sciences, Principal Scientist

Maryna O. Chugay

full-time personnel:

Vitalii I. Gnesin – Doctor of Technical Sciences, Principal Scientist, Professor

Liubov V. Kolodizhna – Doctor of Technical Sciences, Principal Scientist

Olena O. Strelnikova – Doctor of Technical Sciences, Principal Scientist, Professor

Yurii A. Bykov – Candidate of Technical Sciences, Senior Scientific Researcher

Vasyl I. Gnytko – Candidate of Technical Sciences, Senior Scientific Researcher

Dmytro Yu. Kosiyanov – Candidate of Technical Sciences, Senior Scientific Researcher

Valerii M. Dedkov – Candidate of Technical Sciences, Senior Scientific Researcher

Petro M. Suhorebryi – Candidate of Technical Sciences, Senior Scientific Researcher

Oleg M. Khorev – Candidate of Technical Sciences, Senior Scientific Researcher

Viktor A. Yakovlev – Candidate of Technical Sciences, Senior Scientific Researcher

Natalia V. Paschenko – Candidate of Technical Sciences, Senior Scientific Researcher

Pavlo O. Korotayev – Candidate of Technical Sciences, Senior Scientific Researcher

Tetiana Yu. Berlizova, Candidate of Technical Sciences, Scientific Researcher

Yavgen S. Agibalov – Principal Engineer

Kyrylo G. Degtiariov – Leading Engineer

Anna I. Kosiyanova – Leading Engineer

Volodymyr M. Zayika – Engineer

Sergii M. Zayika – Technical Expert

Oleksandr V. Vavilov – Technical Expert

History

In 1944 Academician G. F. Proscura organized the Laboratory of Problems of High-Speed ​​Machines and Mechanisms, which in 1948 was merged with the branch of the Institute of Heat and Power of the Academy of Sciences of the UkrSSR, headed by A. P. Filippov – a student of G. F. Proscura.

In connection with the organization of production of hydro turbines at Kharkiv Turbine Plant, the Laboratory in 1953 began to study the working process, the development of flow parts of hydro turbines of different types and structures. In 1954 the Laboratory was renamed into the Laboratory of Hydraulic Machines, and after a number of reorganizations in 1972 got the status of the Institute of Engineering Sciences of the National Academy of Sciences of Ukraine.

Models of adjustable-blade propeller turbines and combined pump-turbine units of radial-axial, diagonal and axial types were created and investigated, and microhydroelectric power plants were developed for different water heads and capacities. Among the most well-known innovations of the Laboratory of Combined Pump-Turbine Units, a flow section of the combined pump-turbine unit: the Dniester Pumped Storage Power Station and Kyiv Pumped Storage Power Plant. Until now, the combined pump-turbine unit of the Dniester Pumped Storage Power Station has the largest unit capacity in Europe and one of the best in the world.

Significant contribution to the creation of unique hydrodynamic stands by which the model tests were carried out, as well as the design of flow parts of hydromachines were made by E. S. Agibalov, V. M. Dedkov, P. M. Sukhorebryi, Yu. I. Fedulov, L. O. Sheludyakov.

Under the guidance of G. O. Sokolovsky and then V. I. Gnesin, who headed the department of nonstationary gas dynamics and aeroelasticity, mathematical models of spatial stationary and non-stationary flows of liquid and gas through turbomachine blades were developed, in particular, the model of the non-stationary transonic gas flow through the turbine stage, which had a world priority. A. O. Bykov, V. A. Vanin, O. I. Golubev, S. V. Yershov, A. V. Rusanov, V. G. Solodov and others contributed significantly to the development of methods of computational hydro-gas dynamics.

On the basis of these studies, in the mid-1990s S. V. Yershov and A. V. Rusanov, (the first in the field of the former Soviet Union) created a complete program complex FlowER, which by this time remains the main instrument for many power machine-building enterprises to calculate spatial viscous flow in flow parts of turbomachines.

Since 2007 the Department of Hydroaeromechanics of Power Machines was established, headed by Doctor of Technical Sciences A. V. Rusanov. Under his direction, the priority direction of applied research of the Institute continues to be developed i.e. scientific support of the creation and modernization of powerful turbines of TPP (Thermal Power Plant), CHPP (Central Heating and Power Plant), NPP (Nuclear Power Plant), HPP (Hydro Power Plant) and PSH (Pumped-storage hydroelectricity), as well as the development of power plants of low power. The Institute developed or upgraded a large number of flow parts of turbomachines, in particular turbines T 100, K 1250, PL20, low power turbines (30-100 kW) for cogeneration units operating on low boiling working bodies, etc.

The basic researches in the field of hydro aeromechanics are carried out, which include the development and improvement of methods of mathematical modeling of spatial viscous turbulent flows of liquids and gas, as well as the design of flow parts of steam, gas and hydraulic machines, and the study of physical processes occurring in them. Besides A. V. Rusanov, Yu. A. Bykov, D. Yu. Kosiyanov, N. V. Paschenko, R. A. Rusanov, M. O. Chugay, O. M. Khorev take active part in these works. A new numerical high accuracy method is developed for modeling the flows of non-viscous compressible and incompressible working medium on unspecified unstructured meshes and its algorithmic scheme. The method differs from the existing ones because for the first time for unspecified unstructured meshes, it was possible to apply effective non-linear implicit splitting schemes and also a recursive approach to the definition of high order derivatives without rotation of large matrices. For the first time, in order to take into account the real properties of working bodies in three-dimensional calculations, an interpolation-analytical method for approximating the modified water and water vapor equation of the IAPWS-95 and Benedict-Webb-Rubin with 32 members is proposed.

The scientists of the department have a world priority in solving the problems of airelasticity with respect to the flow parts of turbomachines (head V. I. Gnesin, responsible performers L. V. Kolodiazhna and Yu. A. Bykov). These studies allow obtaining not only new fundamental knowledge of the intricate physical phenomena of non-stationary aeromechanics, but are also used during the refinement of turbomachines with long shoulder blades. Research is being carried out to create the scientific basis for thermoelasticity, since at some operating conditions the temperature can significantly affect the physical properties of the blades and the conditions of their contact with the flow of the working fluid. The mathematical model and numerical method of the aerobic behavior of the shoulder blade in the transonic flow of the ideal (viscous) gas (the problem of non-stationary aerodynamics and elastic oscillations of blades) is developed.

The proposed methods for calculating aerodynamic and airelasticity characteristics of flow parts allow for the given geometry and operating modes of turbine (compressor) stages to obtain: non-stationary fields of gas-dynamic parameters; nonstationary loads acting on the blades and their spectral analysis; amplitude-frequency spectra of blades oscillations. The use of them allows to predict aerodynamic and airelasticity characteristics of blade devices, possible self-excited oscillation (flatter) zones or self-oscillations and increase efficiency, reliability and extend the life of blades of a turbomachinery (compressor) by reducing non-stationary effects, non-stationary loads and blade oscillation amplitudes. The mathematical models, algorithms and software complexes for the calculation of the aerothermal-elastic interaction of adjacent stages in a three-dimensional stream of viscous gas in the compartment of an axial turbomachine are developed.

The method, on the basis of which the algorithm of designing high-efficiency flow parts of steam, gas and hydraulic power plants with the use of models of different difficulty levels – from one-dimensional to spatial including models of calculation of spatial viscous turbulent currents was created. An important part of this algorithm is the methods of constructing three-dimensional geometry of blades of axial, radial and radial axial turbines, as well as axial and aseadric compressors. These methods are implemented under the direction of A. V. Rusanov created by the IPMFlow software, which is the development of FlowER and FlowER-U software. These results allowed to carry out applied researches on improving the efficiency of flow parts at the stages of designing and modernizing power machines of various applications, including new ones for the institute – Turbine Expansion Engine and Turbo-Units on specific working bodies (organic low boiling working bodies, hydrogen, carbon dioxide, etc.). These developments have been implemented and already in use in a number of research and development projects with the following companies: SJSC «SE Ivchenko-Progress» (Zaporizhzhia, Ukraine), the State Enterprise NKSC «Zorya-Mashproekt Gas Turbine Research and Development Complex» (Mykolayiv, Ukraine), LMZ (St. Petersburg, Russia), «NPC Salut» (Moscow, Russia), PJSC «Sumy NPO» (Sumy, Ukraine), PJSC NPP «Saturn» (Rybinsk, Russia), Motor Sich JSC (Zaporizhzhya, Ukraine), Alstom Power Elblag (Elblag, Poland); PJSC «Turbogas» (Kharkiv, Ukraine), Turboatom OJSC (Kharkiv, Ukraine), Kharkiv turboengineering LLC (Kharkiv, Ukraine), NPV «Donventylator» (Kharkiv, Ukraine), Ural turbine factory (Yekaterinburg, Russia).

Hydromechanical Stands of the Hydromachines Laboratory of A. Pidgorny Institute of Mechanical Engineering Problems of the National Academy of Sciences of Ukraine after the modernization meet all the requirements of the international standard МЕК 60193, which allows, taking into account many years of research experience, to conduct testing and acceptance testing of vertical hydraulic machines of all types. These stands have become a National Heritage. The methods of automated experimental research of flow parts of models of hydraulic turbines are developed. In recent years the final tests at Hydromechanical Stands have been conducted for the HPP Saint-Joan (Brazil) and HPP Rukatayo (Chile) for EKS-15 turning-blades hydro-turbines. A numerous study and analysis of the peculiarities of three-dimensional currents in the elements of the flow part of the turning-blades hydro-turbine and the pump-turbine have been made, on the basis of which recommendations on ways to increase the efficiency of flow parts during the modernization of existing hydroelectric power plants of the Dnipro cascade and the design of new HPP and PSH are developed. The research of a number of working wheels for a pump turbine of the Dniester PSH with splitter wheels is conducted, that is, they have blades of different sizes. The leading specialists in hydraulics of the Institute are Y. S. Agibalov, V. M. Dedkov, P. M. Sukhorebryi, A. M. Khorev and others.

In addition, research is conducted on promising areas:

– numerous simulation of large-scale turbulence in turbomachine grids based on improved adaptive turbulence models;

– development of mathematical models and methods for calculating the flow of incompressible fluid in the elements of hydromachines, taking into account cavitation;

– development of mathematical models of steam flow in flow parts of turbomachines taking into account condensation.

Today, the Department of Hydroaeromechanics of power machines employs 20 people, including 4 Doctors and 9 Candidates of Sciences. The scientists of the department have published 7 monographs and over 600 articles in scientific journals.

Training of personnel

6 Doctoral and 23 Candidate’s Theses have been prepared and defended.

Main scientific trends of research

  • Aerodynamics of blades of turbomachines
  • Airelasticity of turbomachines
  • Computational aerohydromechanics
  • Physical modeling of working process in hydromachines
  • Information Technology
  • Computational aerohydromechanics
  • Aerohydrodynamics of turbomachines blades
  • Mathematical and physical modeling of the working process in hydromachines

Directions of fundamental research

  • Airelasticity of turbomachines blades
  • Mathematical modeling of viscous turbulent gas flows
  • Mathematical modeling of non-stationary currents in flow parts of hydromachines
  • Systems of automated designing and optimization of parameters of the elements of the flow part of hydromachines
  • Development and improvement of mathematical models and methods of calculation of turbulent currents in flow parts of turbomachine
  • Investigation of phenomena and processes in the non-stationary flow of viscous three-dimensional gas flow of blade devices by methods of mathematical modeling
  • Mathematical and physical modeling of phenomena and processes of fluid flow in the elements of flowing parts of hydromachines, optimal design of flow parts and improvement of hydrodynamic stands
  • Development of methods of optimization of designs of power machines

Areas of applied research

  • Development of application software packages for three-dimensional nonstationary currents and airelasticity oscillations of blades of turbomachinery to improve their efficiency and reliability
  • Modernization of the stages of steam and gas turbines, axial and radial compressors
  • Development of application software packages for the calculation of spatial non-stationary currents in the suction pipe of hydromachines
  • Development of the method and complexes of programs for the calculation and physical modeling of the flow of fluid in the elements of hydro turbines and reversible hydromachines
  • Aerodynamic improvement of blade machines and other devices, creation and use of modern computing systems
  • Improvement of the stages of steam and gas turbines, axial and radial compressors; development of new and improved existing theoretical and practical methods of hydrodynamic calculation of blade systems and other elements of flowing parts of hydraulic motors
  • Creation and use of modern technical means and methods that provide model testing of hydromachines at the stands of the laboratory in accordance with the recommendations of the MEC

Publications

Monographs:

  • 1. Соколовський Г.О., Гнесін В.І. Розрахунок змішаних течій в решітках турбомашин. – Київ: Наук. думка.– 1981. – 183с.
  • 2. Соколовський Г.О., Гнесін В.І. Нестаціонарні трансзвукові та в’язкі течії в турбомашинах. – Київ: Наук. думка.– 1986. – 260 с.
  • 3. Аэродинамический расчет и оптимальное проектирование проточной части турбомашин / А.В. Бойко, Ю.Н. Говорущенко, С.В. Ершов, А.В. Русанов, С.Д. Северин // Монография. – Х., НТУ «ХПИ», 2002. – 356 с.
  • 4. Повышение энергоэффективности работы турбоустановок ТЭС и ТЭЦ путем модернизации, реконструкции и усовершенствования режимов их эксплуатации / Ю.М. Мацевитый, В.В. Соловей, Н.Г. Шульженко, А.В. Русанов и др.: Под общ. ред. ак. Ю. М. Мацевитого // Монография. – Киев: Наук. думка, 2008. – 366 с.
  • 5. Математическое моделирование нестационарных газодинамических процессов в проточных частях турбомашин / А.В. Русанов, С.В. Ершов // Монография. – Харков, ИПМаш НАН Украины, 2008. – 275 с.
  • 6. Rusanov A.V. Dynamics of the Last Stage Low Pressure Steam Turbine Rotor Blades, ITWL Warsaw, 281 p., (2017), ISBN 978-83-61021-06-3 (path 10.1-10.3).
  • 7. R. Rzadkowski, V. Gnesin, L. Kolodyazhnaya, Unsteady forces acting on rotating and vibrating rotor blades without exhaust hood. Dynamics of the Last Stage Low Pressure Steam Turbine Rotor Blades, ITWL Warsaw, 281 p., (2017). ISBN 978-83-61021-06-3 (Р. 116-182)

Study guides:

  • 1. Науменко В.В., Шелудько Г.А., Стрельнікова О.О. Методи оптимізації. – Вид-во УкДАЗТ, 2014, 77 с.

Patents:

  • 1. Патент на винахід № ІІА 111657 С2 (Україна). Енергоблок теплової електростанції з піковою надбудовою /МПК (2016.01) БОІК 23/06(2006.01) БОЇ К 13/00(2006.01) Б02С 6/18(2006.01) / Мацевитий Ю.М., Голощапов В. М., Шубенко О.Л., Соловей В.В., Русанов А.В., Антипцев Ю.М.; Заявка № а 2014 10273. Дата подання 19.09.2014, Опубл. 25.09.2015, Бюл. № 18, -9 с. Публ. про видачу пат. 25.05.16, Бюл. № 10.
  • 2. Патент № UA 113710 С2 (Україна). Система соплового парозподілу парової турбіни /МПК (2016.01) F24D 3/18(2006.01) F24H 4/02(2006.01) F01K 25/02(2006.01) / Русанов А.В., Шубенко O.JL, Сухінін В.П., Швецов B.JI., Косьянова A.I.; Заявл № а 2016 08387. Дата поданню 29.07.2016, Опубл. 10.02.2017, Бюл. № 3,-4 с.

Publications in Scopus:

  • 1. Rusanov A., Rusanov R., Lampart P., Designing and updating the flow part of axial and radial-axial turbines through mathematical modelling. Open Engineering (formerly Central European Journal of Engineering) 2015, Vol. 5, pp. 399-410, DOI 10.1515/eng-2015-0047, Online ISSN 2391-5439.https://www.degruyter.com/view/j/eng.2015.5.issue-1/eng-2015-0047/eng-2015-0047.xml
  • 2. Rusanov A.V. Modelling 3D steam turbine flow using thermodynamic properties of steam IAPWS-95 / A.V. Rusanov, P. Lampart, N.V. Pashchenko, R.A. Rusanov / POLISH MARITIME RESEARCH 1 (89) 2016 Vol. 23; pp. 61-67.http://www.bg.pg.gda.pl/pmr/pdf/PMRes_2016_1.pdf
  • 3. Rusanov, A.,Kosianova, A.,Kosianov, D. Development of new partial steam distribution method for providing partial operating modes of powerful steam turbines / Eastern-European Journal of Enterprise Technologies, 2015, Vol. 6, 8(78), pp. 24-28. http://journals.uran.ua/eejet/article/view/55527/53372
  • 4. Yershov, S.V.,Rusanov, A.V.,Yakovlev, V.A. Optimisation of turbomachinery blade shape using 3D viscous flow computations / Proceedings of the 7th European Conference on Turbomachinery: Fluid Dynamics and Thermodynamics, ETC 2007.https://www.scopus.com/record/display.uri?eid=2-s2.0-84925340844&origin=inward&txGid=27cef1f435d43fa5ae38510d84e64c89
  • 5. Lampart P., Yershov, S., Rusanov, A. Increasing flow efficiency of high-pressure and low-pressure steam turbine stages from numerical optimization of 3D blading / Engineering Optimization. Volume 37, 2005 – Issue 2. Pages 145-166 http://www.tandfonline.com/doi/abs/10.1080/03052150512331315497?tab=permissions&scroll=top
  • 6. Lampart, P., Rusanov, A., Yershov, S., Marcinkowski, S., Gardzilewicz, A.Validation of a 3D BANS solver with a state equation of thermally perfect and calorically imperfect gas on a multi-stage low-pressure steam turbine flow / Journal of Fluids Engineering, Transactions of the ASME. Volume 127, Issue 1, January 2005, Pages 83-93. http://fluidsengineering.asmedigitalcollection.asme.org/article.aspx?articleid=1430115
  • 7. Makeev, E. A. Strel’nikova, P. E. Trofimenko, A. V. Bondar’: Selecting Design Parameters for Flying Vehicles. International Applied Mechanics 09/2013; 49(5)., DOI:10.1007/s10778-013-0592-8https://link.springer.com/article/10.1007/s10778-013-0592-8
  • 8. Gnitko, V., Naumenko, V.,Ogorodnyk, U.,Strelnikova, Е. Coupled multi-domain BEM and FEM for fluid-structure interaction analysis WIT Transactions on Modelling and Simulation 54, 2013,pp.33-45.
  • 9. K. V. Avramov, E. A. Strel’nikova, C. Pierre: Resonant many-mode periodic and chaotic self-sustained aeroelastic vibrations of cantilever plates with geometrical non-linearities in incompressible flow. Nonlinear Dynamics 10/2012; 70(2)., DOI:10.1007/s11071-012-0537-5.https://link.springer.com/article/10.1007/s11071-012-0537-5
  • 10. V. Gnitko, V. Naumenko, U. Ogorodnik, E. Strelnikova: Free and forced vibrations of shell structures interacting with liquid. WIT Transactions on Modelling and Simulation 06/2012; 53., DOI:10.2495/BE120081.
  • 11. К. Аvramov, Е. Strelnikova. Chaotic Oscillations of Plates Interacting on Both Sides with a Fluid Flow //International Applied Mechanics, 2014, V.50, №3, pp.303-309
  • 12. J. Ravnik, V. Gnitko, U. Ogorodnyk, E. Strelnikova. A BEM and FEM analysis of fluid-structure interaction in a double tank. WIT Transaction on Modelling and Simulation, 2014, Vol.57, pp.13-25.
  • 13. K. V. Avramov and E. A. Strel’nikova. Saturation of almost periodic and chaotic aeroelastic oscillations of plates under a resonant multimode force// International Applied Mechanics, Vol. 51, No. 3, May, 2015
  • 14. K.G. Degtyarev, V. I. Gnitko, V.V. Naumenko, E. A. Strelnikova. BEM in free vibration analysis of elastic shells coupled with liquid sloshing. WIT Transaction on Modelling and Simulation, 2015, Vol.61, pp.35-46.
  • 15. I. Bokov, E. Strelnikova. Fundamental solution of Static equations of treansversaly Isotropic plates. International Journal of Innovative research in Engineering &Management. Volume 2, Issue 6, 2015, pp. 56-62
  • 16. Strelnikova, E.,Kovch, O. Investigation of the mutual influence of pores in the weld under thermomechanical load EasternEuropean Journal of Enterprise Technologies 2015, (4),pp.59-66
  • 17. E. Strelnikova, O. Kovch. Research into mutual influence of inclusion on the chain of pores in the welded seam under the influence of thermo-force loading//Eastern-European Journal of Enterprise Technologies, 2016; 3/7(81), pp. 9-14.
  • 18. Bokov, I.,Strelnikova, E. Construction of fundamental solution of static equations of medium-thickness isotropic plates. EasternEuropean Journal of Enterprise Technologies 4 (7) 2015, pp. 27-34.
  • 19. J. Ravnik, E. Strelnikova, V. Gnitko, K. Degtyarev, U. Ogorodnyk: BEM and FEM analysis of fluid-structure interaction in a double tank.// Engineering Analysis with Boundary Elements 67, 2016, pp. 13-25.
  • 20. Igor Bokov, Natalia Bondarenko, Elena Strelnikova: Investigation of the influence of local force loads on transversal-isotropic plates using of the generalized theory of {m, n}-aproximation. Eastern-European Journal of Enterprise Technologies 09/2017; 9(1):39-43., DOI:10.15587/2313-8416.2017.11060.
  • 21. V. Gnesin and L. Kolodyazhnaya, R. Rzadkowski Unsteady forces acting on rotor blades in five and half compressor stage, Advances in Vibration Engineering , 11(2), 2013, pp. 205-214
  • 22. Rzadkowski R., Gnesin V., Kolodyazhnaya L., Szczepanik R. The Unsteady Low-Frequency Aerodynamic Forces Acting on Rotor Blades in the First Two Stages of a Jet Engine Axial Compressor in the Case of a Bird Strike, 10th European Conference on Turbomachinery, Fluid Dynamic and Thermodynamics, 15-19 April 2013 Lappeenranta, Finland, Editor J. Backman, G. Bois, O. Leonard, Conference Proceedings, pp. 222-234, 2013.
  • 23. Kubitz L., Rzadkowski R., Gnesin V., Kolodyazhnja L., Direct Integration Method in Aeroelastic Analysis od Rotor Blade of the First Stage Compressor, Journal of Vibration Engineering and Technologies, 2(3),345-356, 2014.

Publications in scientometric jornals:

  • 1. Русанов А.В. Интерполяционно-аналитический метод учета реальных свойств газов и жидкостей // Восточно-Европейский журнал передовых технологий. − 2013. − № 3/10 (63). − С. 53−57.
  • 2. Русанов А.В. Обобщение неявной схемы расщепления для моделирования стационарных и нестационарных газодинамических процессов // Вестник НТУ ˝ХПИ˝. Серия: Математическое моделирование в технике и технологиях. – Харьков, 2013. – № 37 (1010). – С. 174 – 184.
  • 3. Русанов А.В. Математическое моделирование и исследование физических процессов в проточных частях гидротурбин // Восточно-Европейский журнал передовых технологий. − 2013. − № 4/7 (64). − С. 42−48.
  • 4. Мацевитый Ю.М. Модернизация отечественного энергомашиностроения – основа энергетической безопасности Украины / Ю.М. Мацевитый, А.В. Русанов, В.В. Соловей, А.И. Васильев // Пробл. машиностроения. − 2013. − № 4 (16). − С. 66 − 71.
  • 5. Русанов А.В. Развитие экспериментальной базы гидротурбиностроения в ИПМаш НАН Украины / И.С. Веремеенко, А.В. Русанов, В.Н. Дедков, Е.С. Агибалов, С.В. Гладышев // Вестник НТУ ˝ХПИ˝. Серия: Энергетические и теплотехнические процессы и установки. – Харьков, 2014. – № 1 (1044). – С. 12 – 21.
  • 6. Русанов А.В. Математическое моделирование течения жидкости и анализ характеристик потока в подводе гидротурбины ПЛ20 Кременчугской ГЭС / А.В. Русанов, А.В. Линник, П.Н. Сухоребрый, О.Н. Хорев, А.В. Рябов // Вестник НТУ ˝ХПИ˝. Серия: Энергетические и теплотехнические процессы и установки. – Харьков, 2014. – № 1 (1044). – С. 41 – 48.
  • 7. Русанов А.В. Численное исследование и анализ рабочего процесса в проточной части осевой поворотно-лопастной гидротурбины / А.В. Русанов, А.В. Линник, П.Н. Сухоребрый, О.Н. Хорев, Д.Ю. Косьянов, Ю.В. Городецкий // Вестник НТУ ˝ХПИ˝. Серия: Энергетические и теплотехнические процессы и установки. – Харьков, 2014. – № 1 (1044). – С. 125 – 135.
  • 8. Русанов А.В. Разработка проточной части ЦСД паровой турбины Т-125/150-12,8 на основе использования современных компьютерных технологий / А.В. Русанов, А. Л. Шубенко, А. Ю. Култышев и др. // Вестник НТУ ˝ХПИ˝. Серия: Энергетические и теплотехнические процессы и установки. – Харьков, 2014. – № 11 (1054). – С. 16 – 29.
  • 9. Русанов А.В. Влияние простого окружного навала лопастей рабочего колеса осевой гидротурбины ПЛ20 на гидродинамические характеристики проточной части / А.В. Русанов, О.Н. Хорев, А.В. Линник, П.Н. Сухоребрый // Вестник НТУ ˝ХПИ˝. Серия: Гидравлические машины и гидроагрегаты. – Харьков, 2015. – № 3 (1112). – С. 8 – 12.
  • 10. Использование метода интерполяционно-аналитической аппроксимации уравнения IAPWS-95 при расчетах течений в проточных частях паровых турбин / А. В. Русанов, Н. В. Пащенко, Р. А. Русанов // Пробл. машиностроения. – 2015. – Т. 18, № 1. – C. 3–10.
  • 11. Русанов А.В. Разработка проточной части ЦВСД паровой турбины К-1250 на основе методов расчета трехмерных вязких течений/ А.В. Русанов, А.Л. Шубенко, В.Л. Швецов, А.В. Сенецкий // Вестник НТУ ˝ХПИ˝. Серия: Энергетические и теплотехнические процессы и установки. – Харьков, 2015. – № 15 (1124). – С. 7 – 16
  • 12. Rusanov R. Methods for design of axial turbines for ORC cogeneration unit working with MDM / R. Rusanov, P. Klonowicz, A. Rusanov, P. Lampart, L. Jedrzejewski, L. Witanowski // Вестник НТУ ˝ХПИ˝. Серия: Энергетические и теплотехнические процессы и установки. – Харьков, 2015. – № 15 (1124). – С. 86 – 100.
  • 13. Klonowicz P. Methods for design of radial-axial turbines for ORC cogeneration unit working with MDM / P. Klonowicz, R. Rusanov, A. Rusanov, P. Lampart, T.K. Suchcki, J. Surwilo // Вестник НТУ ˝ХПИ˝. Серия: Энергетические и теплотехнические процессы и установки. – Харьков, 2015. – № 16 (1125). – С. 67 – 77.
  • 14. Русанов А.В. Влияние сложного окружного навала лопастей рабочего колеса осевой гидротурбины на структуру потока и энергетические характеристики проточной части / А.В. Русанов, О.Н. Хорев, А.В. Линник, П.Н. Сухоребрый // Вестник НТУ ˝ХПИ˝. Серия: Математическое моделирование в технике и технологиях. – Харьков, 2015. – № 18 (1127). – С. 130 – 141.
  • 15. Rusanov A. Modelling of viscous turbulent flow in flow parts of turbines for ORC plants with taking into account the real properties of the working fluid MDM on the basis of the modified Benedict-Webb-Rubin equation of state / A. Rusanov, P. Lampart, R. Rusanov // Авиационно-космическая техника и технология. – 2015. – № 7 (124). – С. 60–67.
  • 16. Русанов А.В. Моделирование пространственных вязких течений в проточных частях энергетических турбин с использованием различных уравнений состояния / А.В. Русанов, Н.В. Пащенко, Р.А. Русанов // Авиационно-космическая техника и технология. – 2015. – № 8 (125). – С. 46–51.(Index Copernicus, CiteFactor; AcademicKeys; Infobase Index; WordCat; Google Scholar)
  • 17. Русанов А.В. Исследование структуры потока в регулирующем отсеке ЦВД паровой турбины К-325-23,5 на режиме парциальности 0,4 / А.В. Русанов, А.И. Косьянова, Д.Ю. Косьянов // Авиационно-космическая техника и технология. – 2015. – № 9 (126). – С. 75–80.
  • 18. Development of the 500kW and 1 MW ORC turbine flow parts / R. Rusanov, M. Szymaniak, A. Rusanov, P. Lampart // Пробл. машиностроения. – 2017. – Т. 20, № 3. – C. 12–19. ISSN 0131-2928.
  • 19. Русанов А.В. Численное исследование течения жидкости в проточной части гидротурбины ПЛ20 Кременчугской ГЭС/ А.В. Русанов, О.Н. Хорев, А.В. Линник, П.Н. Сухоребрый, Д.Ю. Косьянов // Вісник НТУ «ХПІ». Серія: Гідравлічні машини та гідроагрегати. – Харків: НТУ «ХПІ», 2015. Вип. 45 (1154). – С. 9-15.
  • 20. Русанов А.В. Влияние пространственного профилирования лопастей рабочего колеса на характеристики потока в проточной части осевой гидротурбины / А.В. Русанов, О.Н. Хорев, Д.Ю. Косьянов, А.В. Линник, П.Н. Сухоребрый, С.А. Рябова // Вестник НТУ ˝ХПИ˝. Серия: Гидравлические машины и гидроагрегаты. – Харьков, 2016. – № 20 (1192). – С. 8 – 14.
  • 21. Русанов А.В. Исследование пространственного потока пара в регулирующем отсеке с радиальным парциальным парораспределением / А.В. Русанов, Д.Ю. Косьянов, А.И. Косьянова // Авиационно-космическая техника и технология. – 2016. – № 7 (134). – С. 43–48.
  • 22. Русанов А.В. Разработка 3D дизайна проточных частей турбины и компрессора ТДА с существенно различными параметрами рабочего тела / А.В. Русанов, С.В. Моисеев, А.В. Бурняшев, Р.А. Русанов // Авиационно-космическая техника и технология. – 2016. – № 8 (135). – С. 36–41.
  • 23. Analytical method for profiling of radial stator blades of turbine stages / R.A. Rusanov, A.V. Rusanov, P. Lampart, M.A. Chugay // Пробл. машиностроения. – 2016. – Т. 19, № 3. – C. 5–11. ISSN 0131-2928.
  • 24. Русанов А.В. Влияние осевого навала лопастей рабочего колеса осевой гидротурбины на характеристики течения в проточной части / А.В. Русанов, О.Н. Хорев, Д.Ю. Косьянов, С.А. Рябова, П.Н. Сухоребрый // Вестник НТУ ˝ХПИ˝. Серия: Математическое моделирование в технике и технологиях. – Харьков, 2016. – № 16 (1188). – С. 85 – 93.
  • 25. Русанов А.В. Математическое моделирование течения жидкости и анализ структуры потокав проточной части низконапорной осевой гидротурбины / А.В. Русанов, О.Н. Хорев, С.А. Рябова, Д.Ю. Косьянов, П.Н. Сухоребрый, Н.М. Курская // Журнал инженерных наук. – 2016. – Т. 3, № 2 (2016). С. B 8–B 17.
  • 26. Русанов А.В. Гидродинамическое совершенствование проточных частей осевых гидротурбин при помощи пространственного профилирования лопастей рабочих колес / А.В. Русанов, О.Н. Хорев, С.А. Рябова Д.Ю. Косьянов, П.Н. Сухоребрый // Вісник НТУ «ХПІ». Серія: Гідравлічні машини та гідроагрегати. – Харків, 2016. – № 41 (1213). – С. 49 – 57.
  • 27. Русанов Р.А. Влияние формы лопаток радиальных направляющих аппаратов на эффективность турбинных ступеней/ Р.А. Русанов, А.В. Русанов, П. Лампарт, М.А. Чугай, Н.М. Курская // Вісник НТУ «ХПІ». Серія: Гідравлічні машини та гідроагрегати. – Харків, 2016. – № 41 (1213). – С. 11 – 17.
  • 28. Русанов А.В. Математические модели для расчетов и проектирования проточных частей энергетических установок // Проблеми загальної енергетики, 2014, вип. 4 (39). – С. 34 – 41.
  • 29. Improving the efficiency of radial-axial rotors of turbine stages through the use of complex lean of trailing edges / R.A. Rusanov, A.V. Rusanov, P. Lampart, M.A. Chugay // Пробл. машиностроения. – 2016. – Т. 19, № 4. – C. 6–11. ISSN 0131-2928.
  • 30. Gnesin V.I. Fluid−structure interaction analysis for aeroelastic behaviour of the turbine last stage under design and off−design regimes / V.I. Gnesin, L. Kolodyazhnaya, R. Rzadkowski // Conf. Proceedings, 5th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics.−2003.− Praha, Czech Republic, P.823−836.
  • 31. Gnesin V.I. Numerical analysis of the aeroelastic behaviour for the last turbine stage in 3D transonic flow / V.I. Gnesin, L. Kolodyazhnaya // Proc. of the 6th Intern. Symp. on Aerothermodynamic of Internal Flows.−2003.− Shanghai, Chine, P. 98−103.
  • 32. Gnesin V.I. Stator-rotor aeroelastic interaction for the turbine last stage in 3D transonic flow / V.I. Gnesin, R. Rzadkowski, L. Kolodyazhnaya // Proc. of the 10th ISUAAT .− 2003.− Durham, USA, 12p.
  • 33. Gnesin V.I. Numerical analysis of the fluid−structure interaction for the turbine stage with steam extract / V.I. Gnesin, R. Rzadkowski, L. Kolodyazhnaya, P.Ostrowski, W. Radulski // Power System Engineering−Fluid Flow−Heat Transfer.–2004.−Pilsen, Czech Republic, P. 193−200.
  • 34. Gnesin V.I. Fluid−structure interaction for the turbine stage with steam extract / V.I. Gnesin, R. Rzadkowski, L. Kolodyazhnaya, P.Ostrowski, W. Radulski // Proc. of Intern. Conf. Flow induced vibration.−2004.−Paris, France, 7p.
  • 35. Gnesin V.I. Numerical analysis of the aeroelastic behaviour for the last turbine stage in 3D transonic flow / V.I. Gnesin, L. Kolodyazhnaya // Journal of Thermal Science.−2004.− Vol. 13.− № 4.−P. 328−333.
  • 36. Gnesin V.I. A numerical modeling of stator-rotor interaction in a turbine stage with oscillating blades / V.I. Gnesin, L.V. Kolodyazhnaya, R. Rzadkowski // Journal of Fluids and Structures.−2004.− № 19.− P. 1141−1153.
  • 37. Gnesin V.I. Numerical modelling of the aeroelastic behaviour and variable loads for the turbine stage in 3D transonic flow /V.I. Gnesin, L. Kolodyazhnaya, R. Rzadkowski // Proceedings of 7th ISAIF.−2005.−Tokyo, Japan, 6p.
  • 38. Gnesin V.I. Three−dimensional viscous flutter of rotor blade row / V.I. Gnesin, R. Rzadkowski, L. Kolodyazhnaya // Turbomachines: Aeroelasticity, Aeroacoustics and Unsteady Aerodynamics.− 2006.−Moskow.− P. 103−114.
  • 39. Gnesin V. Stator−rotor aeroelastic interaction for the turbine last stage in 3D transonic flow /V. Gnesin, L. Kolodyazhnaya, R. Rzadkowski // Unsteady Aerodynamics, Aeroelastics and Aeroelasticity of Turbomachines Springer, Netherlands.− 2006.− 12 p.
  • 40. Gnesin V. Aerodynamic unsteady forces of the rotor blades in the control stage with steam extraction / V. Gnesin, R. Rzadkowski, W. Radulski // J. Advances in Vibration Engineering India.−2006.−Vol.5, № 1.− P.1−10.
  • 41. Gnesin V. Experimental and numerical investigation of 2D palisade flutter for the harmonic oscillations / V. Gnesin, V. Tsimbalyuk, A. Zinkovski, R. Rzadkowski, J. Sokolowski // Unsteady Aerodynamics Aeroacoustics and Aeroelasticity of Turbomachines, Springer, Netherlands.− 2006.− P. 53−63.
  • 42. Gnesin V.I. Numerical modelling of the 3D viscous flow through vibrating turbomachine blade row / V.I. Gnesin, L.V. Kolodyazhnaya, R. Rzadkowski // Proc. of 7th European Conference of Turbomachinery, Athens, Greece, 5−9 March 2007.− 12p.
  • 43. Gnesin V.I. 3D inviscid self-excited vibrations of a blade row in the last stage turbine / V.I. Gnesin, R. Rzadkowski // J. of Fluids and Structures.−2007.− № 23.− P. 858−873.
  • 44. Gnesin V.I. The numerical analysis behaviour for the isolated blade row in 3D viscous flow / V.I. Gnesin, L.V. Kolodyazhnaya, R. Rzadkowski // Intern. Symp. on Experimental and Computational Aerothermodynamics of Internal Flows.−2007.− Lyon, France, P.114−124.
  • 45. Gnesin V. Numerical modelling of the 3D viscous flow through a vibrating turbomachine blade row / V. Gnesin, L. Kolodyazhnaya, R. Rzadkowski // Proceedings of the 9th International Conference on Flow−Induced Vibration − FIV2008, Institute of Thermomechanics, Prague, Czech Republic.− 2008. −8 p.
  • 46. Gnesin V. The numerical modelling of aeroelastic behaviour for a turbine stage with oscillating blades in 3D viscous flow / V. Gnesin, L. Kolodyazhnaya, R. Rzadkowski // Proceedings of the 8th International Conference on Power System Engineering, Thermodynamics and Fluid Flow, ES 2009, Plsen, Czech Republic.−2009.−P. 37−45.
  • 47. Gnesin V. Numerical Modelling of fluid–structure interaction in a turbine stage for 3D viscous flow in nominal and off−design regimes / V. Gnesin, L. Kolodyazhnaya, R. Rzadkowski // Proceedings of ASME , TURBO-EXPO 2010, GT2010−23779, Glasgow, UK.−2010.− P. 1−9.
  • 48. Gnesin V.I. The unsteady rotor blade forces for a changing the number of stator blades / V.I. Gnesin, R. Rzadkowski, M. Solinski, L. Kolodyazhnaya // Proceedings of the 8th IFToMM International Conference on Rotordynamics, KIST, Seoul, Korea.−2010.− P. 1−8.
  • 49. V. Gnesin and L. Kolodyazhnaya, R. Rzadkowski Unsteady forces acting on rotor blades in five and half compressor stage, Advances in Vibration Engineering , 11(2), 2013, pp. 205-214.
  • 50. V. Gnesin, R. Rzadkowski, L. Kolodyazhnaya Aeroelastic analysis of rotor blades in the first two stages of axial compressor in the case of bird strike», Intern. Conf. on Turbomachinery and Fluid Dynamics, 14-15 March, 2013, Rio de Janeiro ICTFD, Issue75, pp. 616-623.
  • 51. В.И. Гнесин, Л.В. Колодяжная, Р. Жандковски, А.А. Колесник Влияние парциального подвода в трехступенчатом отсеке осевого компрессора на нестационарные нагрузки и колебания рабочих лопаток, Харьков, Энергетические и теплотехнические процессы и оборудование, Вестник НТУ ХПИ, 2014р., № 11(1054), С. 43−52.
  • 52. R. Rządkowski,V. Gnesin, L. Kolodyazhnaya , L. Kubitz Unsteady Forces Acting on the Rotor Blades in the Turbine Stage in 3D Viscous Flow in Nominal and Off-Design Regimes, Journal of Vibration Engineering, and Technologies, 2(2), P. 89-95, 2014р.
  • 53. L. Kubitz, R. Rządkowski,V. Gnesin, L. Kolodyazhnaya Direct Integration Method in Aeroelastic Analysis on Rotor Blade of the First Stage Compressor, Journal of Vibration Engineering», Journal of Vibration Engineering, and Technologies, 2(3), 2014, P. 345-356.
  • 54. В.И. Гнесин, Л.В. Колодяжная, А.А. Колесник Численный анализ аэроупругого поведения лопаточного венца вентилятора компрессора, Харьков, Энергетические и теплотехнические процессы и оборудование, Вестник НТУ ХПИ, № 1(1044), 2014, С. 77−87.
  • 55. В.И. Гнесин, Л.В. Колодяжная, А.А. Колесник Аэроупругие колебания лопаточного венца турбомашины в трехмерном потоке вязкого газа, Вісник НТУ «ХПІ», Серія: Енергетичні та теплотехнічні процеси та устаткування.-Х.: НТУ «ХПІ», 2015-№ 15.- C.32-40. – ISSN 2078-774X.
  • 56. В.И. Гнесин, Л.В. Колодяжная, Р. Жандковски Численный анализ нестационарных нагрузок и аэроупругих колебаний лопаточного венца последней ступени турбомашины с учетом неравномерного в окружном направлении противодавления, Вісник НТУ «ХПІ». Серія: Гидравлические машины и гидроагрегаты– Харьков : НТУ «ХПИ», 2015. – № 45 . – 16-20c. – Библиогр. 7 назв. – ISSN 2411-3441.