#43 Department of Hydrogen Energy

Acting Head of Department

Candidate of Technical Sciences, Principal Scientist

Andrii M. Avramenko

E-mail: an0100@ukr.net

+380 (57) 349 47 35

Deputy Head of Department


Candidate of Technical Sciences, Principal Scientist

Mykola M. Zipunnikov

full-time personnel:

Viktor V. Solovey – Doctor of Technical Sciences, Principal Scientist, Professor
Natalia A. Chorna – Candidate of Technical Sciences, Senior Scientific Researcher
Anton M. Levterov – Candidate of Technical Sciences, Senior Scientific Researcher
Valerii M. Bgantsev – Candidate of Technical Sciences, Senior Scientific Researcher
Iryna O. Vorobyova – Main Technologist
Viktorya V. Inkulis – Master Programmer
Andrii A. Shevchenko – Principal Engineer
Anatolii L. Kotenko – Leading Engineer
Natalia Yu. Gladkova – Leading Engineer
Vitalii M. Semykin – Engineer
Vira M. Kireyeva – Engineer
Liudmila I. Golubenko – Engineer
Mykola M. Karasichenko – Engineer
Yanina V. Krasko – Technical Expert


The department was established in 1974 on the basis of the Department of Hydropower of Institute of Mechanical Engineering Problems of the National Academy of Sciences of Ukraine, in 2016 the department of piston power plants was included into the Institute.

The department has a priority in the development and development of a concept for the development of a new scientific direction in thermal power engineering – «Metal-Hydride Technology».

In the framework of studies in this direction, new data were obtained that reveal the mechanism of energy-mass transfer in processes of nonstationary interaction of hydrogen with metal hydrides.

Using the developed method of the thermodynamic perturbation theory for the molecular phase in the system «Metalhydride – Hydrogen», the parameters of phase equilibria were determined in a wide range of changes in the regime parameters. The isotopic effect of reducing the ionization potential by electron impact of hydrogen molecules from the surface of metal hydrides were established and investigated and its quantitative estimation were given.

The theoretical foundations of the metallohydride technology of thermochemical hydrogenation of hydrogen have been developed and the physical model of ortho-paroconversion of its isotopes is proposed and the range of thermodynamic parameters is provided, which provide the emission of the molecular component of hydrogen to the gas phase in the oscillating-excited state, which is the initiating factor of physicochemical transformations in the transformation of energy and provides an increase in the coefficient of use of fuel and energy resources and reducing the technogenic impact on the environment.

For the first time, the effect of autostabilization of electric discharge in a system with a metal hydride cathode was revealed. The influence of the properties of a hydride-forming material on the characteristics of the autostabilized discharge mode in crossed EH fields, which ensured its effective application in accelerating technique, was established.

The theory of energy transformation with the help of metal hydride energy converters and the construction of new thermodynamic cycles were developed, based on which samples of hydrogen energy technology plants of polyfunctional purpose were created.

According to the results of fundamental researches of the working processes of piston diesel engines at work on regular and alternative fuels, regularities of the formation of harmful was been made.

The methods were developed and practical results were obtained for the determination of the thermophysical properties of alternative fuels for the ICE in a wide range of pressures and temperatures.

Original samples of hydrogen accumulators were developed, manufactured and tested in the conditions of operation, installed on cars of different classes (cars, minibuses and trucks), engines of which had significantly improved toxicity. On the basis of theoretical and experimental studies, methods of adaptation of transport vehicles to the use of benzoethanol and biodiesel fuel were developed. The original ways of maintaining the stability of biofuels on board vehicles were developed and recommendations for improving the technology of their production were formulated.

On the subject of the department 12 monographs, 627 articles, 124 patents were published.

Training of personnel

12 Doctors and 27 Candidates of Sciences in technical and physical-mathematical specialties have been trained.

Main scientific trends of research

  • Thermodynamics of non-equilibrium processes of hydrogen production and use
  • Thermodynamic and thermophysical bases of creation and optimization of cycles with thermochemical compression of a working body
  • Physical and mathematical modeling of processes of hydrogen interaction with hydride-forming materials
  • Heat-mass transfer in gas-plasma processes for the production and use of hydrogen
  • Mathematical modeling of working processes and the generation of harmful emissions
  • Methods of increasing the efficiency, specific power, resource and reducing the toxicity of exhaust gases with the use of hydrogen and alternative fuels


  • 1. Применение водорода для автомобильных двигателей / А. И. Мищенко. – Киев: Наук. думка, 1984. – 141 с.: ил.; 20 см. Режим доступу: https://search.rsl.ru/ru/record/01001192376
  • 2. Соловей В. В., Оболенский М. А., Бастеев А. В. Активация водорода и водородсодержащих энергоносителей.– Киев: Наук. думка, 1993. – 168 С.
  • 3. Маринин В. С. Теплофизика альтернативных энергоносителей. – НАН Украины. Ин-т пробл. машиностроения им. А.Н. Подгорного. – Харьков: Форт, 1999. – 212 с.
  • 4. Системы хранения и подачи водорода на основе твердых веществ для бортовых энергетических установок / Ю. А. Абрамов, В. И. Кривцова, В. В. Соловей. – Харьков.– 2002. – 277 с.
  • 5. Повышение энергоэффективности работы турбоустановок ТЭС и ТЭЦ путем модернизации, реконструкции и усовершенствования режимов их эксплуатации / Мацевитый Ю. М., Шульженко Н. Г., Голощапов В. В. и др.: Под общ. ред. ак. Ю. М. Мацевитого; НАН Украины, Институт проблем машиностроения. – Киев: Наук. думка, 2008. – 366 с.
  • 6. Товажнянский Л. Л., Кошельник В. М., Кошельник А. В., Соловей В. В. Интегрованные энергосберегающие теплотехнологии в стекольном производстве // Харьков: НТУ «ХПИ», 2008.– 628 с.
  • 7. Научные основы создания газотурбинных установок с термохимическим сжатием рабочего тела / Ю. М. Мацевитый, В. В. Соловей, В. Н. Голощапов, А. В. Русанов; НАН Украины, Институт проблем машиностроения. – Киев: Наук. думка, 2011. – 251 с.
  • 8. Экологизация автомобильно-дорожного комплекса и экологическое право: монография / Н. В. Внукова, В. В. Соловей, В. Г. Кононенко и др. – Х.: ФЛП Бровин А. В., 2015. – 264 с.
  • 9. Solovey V.V., M. Muminov, A. Basteev. Autonomous energy technological complex with hydrogen as the secondary energy carrier / International Scientific Journal “Alternative Energy and Ecology”. N 1(9), p.60-64, 2004. Режим доступу: http://naukarus.com/autonomous-energy-technological-complex-with-hydrogen-as-the-secondary-anergy-carrier
  • 10. Solovey V. V., Basteev A., Forfutdinov V. Autonomous energy techological complex tests in real geo-climate conditions / International Scientific Journal for Alternative Energy and Ecology ISJAEE №8(28) – 2005. – С. 52-55. Режим доступу:http://naukarus.com/autonomous-energy-techological-complex-tests-in-real-geo-climate-conditions
  • 11. Solovey V. V., Glazkov V. A., Pishuk V. K. Autonomous wind-hydrogen stations / Hydrogen Materials Science and Chemistry of Carbon Nanomaterials, T. N. Veziroglu et.al. (eds). – 2007 Springer.- PP. 861-865. Режим доступу: https://www.researchgate.net/publication/225622420_Autonomous_wind-hydrogen_stations
  • 12. Соловей В. В., Литвинов В. А. Термодинамические и технологические аспекты металлогидридной активации водорода / Научно-технический и производственный журнал «Технические газы». – 2013, № 3.– С. 55-59. Режим доступу: https://elibrary.ru/item.asp?id=21051695
  • 13. Vasiliev L. L., Solovei V. V.,. Kharlampidi D.Kh., Stachel A. A, Kujawa T., Tarasova V. A.,. Zhuravlev A. S, Tsitovich A. P., Kostenko E. V. Physical Processes and Technical Means for Using the Thermal Energy of Alternative Sources / Journal of Engineering Physics and Thermophysics, Vol. 88, No. 5, September, 2015. – P. 100 – 1109.76. Режим доступу: https://www.researchgate.net/publication/283045661_Physical_Processes_and_Technical_Means_for_Using_the_Thermal_Energy_of_Alternative_Sources
  • 14. Мацевитый Ю. М., Соловей В. В., Васильев А. И. Перспективы энерго- и ресурсосбережения на основе интеграционной модели развития территориально-промышленных комплексов / Технологический аудит и резервы производства – № 6/1(20), 2014. – С. 26-31. Режим доступу: https://www.researchgate.net/publication/283045661_Physical_Processes_and_Technical_Means_for_Using_the_Thermal_Energy_of_Alternative_Sources
  • 15. J. Kleperis, V. V. Fylenko, V. Solovey, M. Vanags, A. Volkovs1, L. Grinberga, A. Shevchenko, M. Zipunnikov / Self-sufficient PV-H2 alternative energy objects. Проблемы машиностроения. – 2016. – Т. 19, №4. – С. 62-68. Режим доступу: http://journals.uran.ua/jme/article/view/86822/82394
  • 16. Solovey V. V., Fylenko V. V., Tinti F., Shevchenko A., Zipunnikov M. Smart pv-H2 grid energy complex // Проблемы машиностроения. – 2017. – Т. 20, № 3.– С. 49-53. https://elibrary.ru/item.asp?id=21051695 http://journals.uran.ua/jme/article/view/113838/108408