PROPOSALS FOR IMPLEMENTATION

Download an illustrated catalog in PDF format DOC (51 MB)
expand list
 collapse list ↑ 
Developing and investigating flow parts of hydraulic machines

The Institute is the leading organization in Ukraine in developing flow parts of hydraulic turbines and reversible hydraulic machines for HPS, PSPS and micro HPS. Projects can be executed in developing flow parts of model samples of Kaplan turbines in the range of heads within 5 to 80 m; Francis turbines and Francis pump turbines for heads within 70 to 500 m, and micro HPS.

     В состав лаборатории гидромашин ИПМаш НАН Украины входят два замкнутых гидродинамических стенда ЭКС-15 и ЭКС-30, которые являются универсальными установками, обеспечивающими проведение комплексных экспериментальных исследований при создании высокоэффективных проточных частей гидромашин.
     Гидродинамические стенды по своим параметрам и оснащению являются уникальными сооружениями, не имеющими аналогов в Национальной академии наук Украины, имеют статус «национального достояния» и предназначены для выполнения научно-исследовательских работ по изучению рабочего процесса в гидромашинах.
     В лаборатории разработано и испытано более 30 гидротурбин, насосов и обратимых гидротурбин, в том числе для Каховской, Днестровской, Днепродзержинской, Киевской ГЭС, Днестровской ГАЭС (Украина), Вилюйской, Хантайской ГЭС (РФ), Перепадной ГЭС (Грузия), Шамxорской ГЭС (Азербайджанская Республика), Тхак-Ба ГЭС (Социалистическая Республика Вьетнам), Ниуил-IV (Аргентинская Республика), Сен-Жуан (Федеративная Республика Бразилия), Рокотайо (Республика Чили).
     При проведении приемо-сдаточных испытаний модели поворотно-лопастной гидротурбины на стенде ЭКС-15 значения среднеквадратичной суммарной погрешности КПД, определенные в соответствии с МЭК 60193, составляют ± (0,23…0,25)%, что соответствует современному мировому уровню для подобного оборудования.
     Широкие оперативные возможности системы управления стендов обеспечивают удобство установки и стабильность режимов испытаний, автоматизированная система измерений и математической обработки режимных параметров позволяет получать характеристики моделей гидромашин с высокой степенью достоверности с обеспечением соблюдения критериев моделирования, предусмотренных МЭК 60193, а также других требований, предъявляемых к приемо-сдаточным испытаниям в сжатые сроки.
     Для спроектированных и установленных на стендах моделей гидротурбин, насосов, обратимых гидромашин могут быть получены экспериментальные энергетические и кавитационные характеристики проточных частей, а также пульсационные и силовые характеристики в соответствии с требованиями Заказчика. На рисунке показан модельный блок поворотно-лопастной гидротурбины ПЛ30, установленный на энергокавитационном стенде ЭКС-15.
     Гидродинамические стенды после проведенной модернизации отвечают всем требованиям международного стандарта МЭК 60193 (таблица), что позволяет с учетом многолетнего опыта проводить исследовательские и приемо-сдаточные испытания моделей вертикальных реактивных гидромашин всех типов.

Small turbines

Model of pumped-storage
hydraulic machine

Universal and fluid dynamic test benches for testing models of pumped-storage hydraulic machines and Francis turbines

Параметры гидродинамических стендов ИПМаш НАН Украины

Маркировка стендов ЭКС-30
(для испытаний моделей РО гидромашин)
ЭКС-15
(для испытаний моделей ПЛ гидромашин)
Диаметр рабочего колеса модели, мм 350-400 350-380
Напор, м ≤25(30) ≤12(15)
Расход, м3/с ≤0,3(≤0,5) ≤0,56(≤0,7)
Мощность приводных двигателей постоянного тока циркуляционных насосов, кВт ≤160 ≤160
Мощность балансирного мотор-генератора, кВт ≤180 ≤200

-= The investigation results have been implemented in projects for several HPS and PSPS =-

Mathematical simulation of turbomachinery gas-dynamic processes
Numerical approach::
  • unsteady 3D compressible Reynolds equations;
  • two-equation Menter's SST turbulence model;
  • Godunov's implicit monotonous high-resolution scheme;
  • method of local structuring of unstructured grids.

 

Analysis of 3D flow and integral

characteristics of cascades

Simulation

 

 of periodically

 

 unsteady

 

 interaction

 

 of reciprocally

 

 moving cascades

 

Entropy function isolines

Implemented at:: Alstöm Power, Elblag (Paland); JSC «Saturn» (Rybinsk, Russia); MEIE «Salute» (Moscow, Russia); JSC «LMZ» (St.Petersburg, Russia)

Calculation and design of flow parts of steam, gas and hydraulic power plants

    At the A.N. Podgorny Institute for Mechanical Engineering Problems of the NAS of Ukraine developed a method for the design of flow parts of steam, gas and hydraulic power plants, which uses mathematical models of different levels of difficulty, including calculation methods of viscous turbulent flows. Geometry of flow parts are constructed using analytical methods of profiling, initial data for which is a limited number of the parametric values. It is allows, on the one side, to reduce the design time, and the other - to provide a high level of aerohydrodynamic perfection of created structures.
   With the growing shortage of energy resources an important requirement for modern turbounits, is their high efficiency. Improving the efficiency of power plants is possible by gas-hydrodynamic improving of the flow parts and spatial profiling of blade system. The developed method allows providing a high level of efficiency of developed or modernized flow parts, reducing design time and experimental operational development power plants.
   Using the method was developed or modernized energetic machines of various purpose: turboexpander, the turbine at low boiling working fluid, medium pressure cogeneration turbine.

   Turbine of turboexpander MTDA-3,0-10,4-MP-U2 (manufacturer – PJSC "Turbogaz"). This is a single-stage turbine of radial-axial type. Its feature is that it works in wide range of variation operating parameters, because of what it is made with rotable stator blades. Depending on the operating mode the mass flow of the working fluid is twice changed, which leads to the presence of significant positive or negative angle of attack flow to the rotor blade. In spite of this, flow in the flow part is unseparated, and its internal efficiency exceeds 92% in the entire range of operating modes.
   Currently developed flow part is made (Fig. a), it is mounted on a turboexpander MTDA-3,0-10,4-MP-U2 in Timofeevskii oil gas condensate field in Hadiach city of Poltava region (Fig. b) and has been tested. Its results were confirmed all the declared characteristics.

Turboexpander MTDA-3,0-10,4-MP-U2

a – rotor

Rotor
b – operational intallation

Operational intallation

100 kW turbine for cogeneration plant
Designed seven-stage axial miniturbine for cogeneration plant with rotation speed of 9000 rev/min and electric power of 100 kW.

Axial miniturbune
Axial miniturbune

Flow part of MPC of T-125/150-12,8 turbine

   Developed the medium-pressure flow part of new modification of T-125/150-12,8 series cogeneration turbine. There are more than 300 turbines of this series installed on the territory of the former USSR. Based on the computational research and analysis of the flow were identified measures to improve the gas-dynamic efficiency of the flow part. Total internal efficiency of the proposed new construction amounted 92.3%, which is 2.9% higher than in the initial version. At present is released engineering documentation and manufacturing of the turbine is in the process, end of which planned in 2015.
   The developed method of designing of flow parts of steam, gas and hydraulic power plants introduced or used in ZMBDB «PROGRESS named after academician A.G. Ivchenko» (Zaporozhye, Ukraine), SEGTSPC «ZORYA»-«MASHPROYEKT» (Nikolaev, Ukraine), JSC «LMZ» (Saint-Petersburg, Russian Federation), PJC «TURBOHOLOD» (Moscow, Russian Federation), PJSC «Sumy Frunze NPO» (Sumy, Ukraine), NPO «SATURN» (Rybinsk, Russian Federation), PJSC «MOTOR-SICH» (Zaporozhye, Ukraine), Alstom Power Elblag (Elblag, Poland), PJSC «TURBOGAZ» (Kharkov, Ukraine), PJSC «TURBOATOM» (Kharkov, Ukraine), LLC «KHARKOVTUBOINGENEERING» (Kharkov, Ukraine), LLC «NPO "DONVENTILJATOR"» (Kharkov, Ukraine), CJSC «UTW» (Ekaterinburg, Russian Federation).

Software-information system for solving optimization and identification tasks for power units design and lapping

     The methodology and methods of identification of mathematical models of physical processes in power plants with qualitatively new software and information system are provided. It includes - an integrated environment, implemented in the form of model-software system that provides in a single information area multi-purpose and multi-level optimization problem solving to identify the parameters and characteristics of power plants of various purpose (steam turbine, gas turbines, aircraft engines, etc.) on the stage of their design and lapping.
     The composition of the model-software complex are: a mathematical model of the studied object; experimental results presented in numerical, graphical or software form; subsystem of optimization, that allows to search for optimal solutions on the base of modern mathematical methods; the archive of project design solutions; software and information interface, which provides links between system components.
     The complex is invariant with respect to the studied models. All problematic tasks, software and information interface, and optimization techniques are worked out in the form of dynamically linked libraries (dynamic link libraries (DLL)). DLL are implemented as executable modules containing ready-to-work procedures, functions, and (or) resources.
     Having adequate mathematical model allows to reduce the terms of lapping up to (10%), to eliminate a number of experimental studies up to (10-15%), and to obtain reliable information about the parameters and characteristics of the object under study as a whole and its individual components throughout the range of operation. In addition, the model can be used to obtain diagnostic information, the bearers of which are measurable parameters of the object.
     A distinctive feature of the proposed approach is a solution to the problem of parametric identification without any transformation of the mathematical model of the object, i.e., calculation of criteria for the identification, residuals, parameters and characteristics of the unit is carried out according to the same algorithm as in the actual design, maintaining traditional relationships and sequences. The algorithm of multi-criteria optimization, avoiding convolution additive criterion in selected criteria of quality that enables us to obtain the best value for each of the function of quality, rather than to improve one of them at the expense of others is developed.
     It is used in the design and lapping of power plants for different purposes (steam turbine, gas turbines, aircraft engines, and others.).

Structural scheme of the Optimum

The system implemented at the
State enterprise Zaporozhye Machine-Building Design Bureau "Progress"
named after Academician A.G. IVCHENKO and
is used in real design of aircraft gas turbine engines.

The tasks of identification of mathematical models of the engines AI-25TL,
D-136, D-436 modifications have been solved by this complex.

Maximum dimensionality:

- variated parameters 512;
- constraints on inequalities 512;
- constraints on equalities 256;
- quality criteria 10