

Харьков – **2019**

НАЦИОНАЛЬНАЯ АКАДЕМИЯ НАУК УКРАИНЫ

ІНСТИТУТ ПРОБЛЕМ МАШИНОСТРОЕНИЯ им. А. Н. Подгорного

адрес: 61046, г. Харьков, ул. Пожарского, 2/10

тел. +38 (0572) 94-55-14

факс +38 (0572) 94-46-35; 94-27-34

E-mail: admi@ipmach.kharkov.ua

www.ipmach.kharkov.ua

Институт проблем машиностроения им. А.Н. Подгорного НАН Украины (ИПМаш) создан в 1972 г.

Первый директор института с 1972 г. по 1996 г. — академик НАН Украины А.М. Подгорный (1932-1996 г.) С 1996 по 2016 г. институтом руководил академик НАН Украины Ю.М. Мацевитый.

С декабря 2016 директор института — член-корреспондент НАН Украины А. В. Русанов.

В составе ИПМаш 9 научных отделов, работает 242 специалиста (120 научных сотрудников, в т.ч. один академик и четыре члена-корреспондента НАН Украины, 28 докторов и 57 кандидатов наук), а также специальное конструкторско-технологическое бюро и опытное производство. В 2000г. создан научно-технический концерн "ИПМаш НАНУ".

Научные школы, которые сформировались в институте:

- * по гидромехани<mark>ке и проф</mark>илированию лопастных систем гидравлических машин (создана академиком АН УССР Г.Ф. Проскурой);
- * механиков-энергомашиностроителей (основана академиком АН УССР А. П. Филипповым);
- * по оптимизации процессов и конструкций турбомащин (создана академиком АН УССР Л.А. Шубенко-Шубиным);
- * по математическому моделированию физических процессов (основана академиком НАН Украины В.Л. Рвачевым);
- * по нетрадиционной энергетике, в частности водородной (создана академиком НАН Украины А.Н. Подгорным);
- * по теплофизике в области моделирования и идентификации нелинейных тепловых процессов (основана академиком НАН Украины Ю.М. Мацевитым).

Научные направления фундаментальных и прикладных исследований:

- оптимизация процессов в энергетических машинах и усовершенствование их конструкций;
 - энергосберегающие технологии и объекты нетрадиционной энергетики;
- прогнозирование надежности, динамической прочности и ресурса энергетического оборудования;
 - моделирование и компьютерные технологии в энергетическом машиностроении.

Прикладные исследования проводятся целенаправленно по актуальным комплексным проблемам отраслей экономики.

ИПМаш НАН Украины - активный участник формирования "Энергетической стратегии Украины до 2030 года", концепции Государственной программы обеспечения технологической безопасности в основных отраслях экономики, региональной программы "Ресурс", инициатор создания Академического научно-образовательного комплекса (АНОК) для сквозной подготовки

научных кадров от школьной скамьи (академического лицея) до аспирантуры и докторантуры. В его состав входят ННЦ ХФТИ и 8 ведущих учреждений высшего образования Харькова.

В рамках развития этого направления на базе АНОК «Ресурс» в 2012 г. создан Научный парк (НП) «Наукоград-Харьков». Цель — интеграция научного, образовательного и промышленного потенциалов Харькова для реализации инновационного пути развития экономики региона и государства в целом.

В институте работают докторантура и аспирантура, функционируют два специализированных ученых совета по защите докторских и кандидатских диссертаций.

Работы ученых отмечены Государственными премиями СССР и Украины, именными премиями выдающихся ученых Украины, премиями Президиума НАН Украины для молодых ученых, стипендиями Президента Украины и Харьковской облгосадминистрации имени выдающихся ученых Харьковщины, Почетными грамотами местных органов самоуправления.

Научные труды ученых института публикуются во многих специализированных зарубежных изданиях.

В институте издается международный научно-технический журнал "Проблемы машиностроения".

ИПМаш НАН Украины – участник многих международных и национальных выставок, как в Украине, так и за рубежом.

АНТИКОРРОЗИОННАЯ ПОЛИМЕРНАЯ ЗАЩИТА УСТАНОВОК ХИМВОДОПОДГОТОВКИ ТЭС и ТЭЦ

Предназначение

Антикоррозийная полимерная защита может быть использована при защите установок химической водообработки контактирующих с жидкими и газообразными средами для:

- продления эксплуатационного срока службы;
- защиты металлических поверхностей от агрессивного воздействия кислотных, щелочных и др. сред;
- защиты поверхностей от механического воздействия;
- обеспечение декоративного эффекта;
- обеспечение надежной защиты от агрессивного воздействия атмосферных факторов, воды и водно-солевых растворов.

Преимущества

Высокие технические характеристики – повышенная химстойкость, влагонепроницаемость, эластичность, нанесение на поверхность любой кривизны и готовой формы, высокая ремонтопригодность и механическая прочность. Долговечность такого покрытия составляет 12-15 лет.

Рис. 1 Антикоррозийная защита внешней и внутренней поверхностей бака смягчения воды

Контакты

Паршина Татьяна Николаевна

Институт проблем машиностроения им А.Н. Подгорного НАН Украины

Тел: +38 (0572) 349-47-57; E-mail: port342017@gmail.com

ГЛУБОКОВОДНОЕ АВТОНОМНОЕ ПОДЪЕМНОЕ УСТРОЙСТВО (АПУ)

Предназначение

Применяется при освоении природных ресурсов и исследовании Мирового океана для подъема затонувших объектов, выноса направляющих тросов для крупнотоннажных объектов, доставки оборудования и конструкций для подводных нефтегазопроводов на заданную глубину.

Преимущества

В отличие от традиционных способов подъема объектов ΑПУ из-под воды, не требует применения больших тросов. За счет того, что водород является самым легким газом, его подъемная сила позволяет применять устройство любых практически на глубинах Мирового океана.

Рис. 1 – АПУ на палубе подводного аппарата

Контакты

Кравченко Олег Викторович

Институт проблем машиностроения им. А.Н. Подгорного НАН Украины,

Тел.: +38(057)349-47-74; E-mail: krav@ipmach.kharkov.ua

РАЦИОНАЛЬНОЕ УПРАВЛЕНИЕ ОТПУЩЕНИЕМ ТЕПЛОТЫ ОТ ДВУХСТУПЕНЧАТОЙ ТЕПЛОФИКАЦИОННОЙ УСТАНОВКИ ПАРОВОЙ ТУРБИНЫ

Предназначение

Метод оптимизации работы теплофикационных установок турбин ТЭЦ при обеспечении надежности работы цилиндров низкого давления, который позволяет снизить затраты на электроэнергию.

Методика и программное обеспечение для оптимизации распределения тепловой нагрузки между сетевыми подогревателями теплофикационных турбин.

Преимущества

За счёт дополнительно произведенной электроэнергии в течение отопительного сезона на энергоблоке с турбиной Т- 100/120-130 возможна экономия природного газа ~ 3 млн. м³.

Включенное в систему мониторинга энергоблоков программное средство позволяет управлять ими в реальном времени и оптимально распределять тепловую нагрузку между сетевыми подогревателями.

Рис. 1 Блоки № 1 и № 2 с турбинами Т-100/120-130

Контакты

Шубенко Александр Леонидович

Институт проблем машиностроения им. А.Н. Подгорного НАН Украины

Тел: +38 (0572) 349-47-30; E-mail: shuben@ipmach.kharkov.ua

ГИДРОКАВИТАЦИОННЫЙ МЕТОД И ОБОРУДОВАНИЕ ДЛЯ ПРОИЗВОДСТВА И СЖИГАНИЯ КОМПОЗИЦИОННЫХ ТОПЛИВ

Предназначение

Композиционные топлива могут использоваться на различных энергетических объектах, в промышленности и коммунальном хозяйстве для замены природного газа и мазута.

Преимущества

В отличие от традиционный методов производства топлив из отходов (пиролизные технологии и биогазовые установки) представленный метод является безотходным и значительно дешевле в реализации.

Рис. 1 Гидрокавитационный преобразователь

Контакты

Кравченко Олег Викторович

Институт проблем машиностроения им. А.Н. Подгорного НАН Украины,

Тел.: +38(057)349-47-74; E-mail: krav@ipmach.kharkov.ua

ДАТЧИК ВИБРОСКОРОСТИ С ФУНКЦИЯМИ КОНТРОЛЯ И АНАЛИЗА ВИБРАЦИОННЫХ ПАРАМЕТРОВ

Предназначение

Датчик предназначен для оценки вибрационного состояния (ISO 10816) невращающихся частей механизмов ТЭС и ТЭЦ и других промышленных объектов. Датчик сигнализирует о превышении СКУ виброскорости заданных уровней и о резком изменении (прыжок) вибрации.

Преимущества

Контроль СКУ виброскорости в заданных полосах частот измерения и амплитуд спектральных составляющих виброскорости.

Автоматическая проверка исправности функционирования.

RS-485 интерфейс для удаленного доступа и передачи данных.

Рис. 1 Внешний вид датчика

Контакты

Гармаш Наталья Григорьевна

Институт проблем машиностроения им. А.Н. Подгорного НАН Украины

Тел: +38 (0572) 349-47-55; E-mail: shulzh@ipmach.kharkov.ua

ЭЛЕКТРОЛИЗЕР ВЫСОКОГО ДАВЛЕНИЯ

Предназначение

Разработка предназначена для получения экологически чистого энергоносителя — водорода и кислорода путем электролитического разложения воды. Электролизер может быть использован в промышленности, энергетике, химической, металлургической, пищевой промышленности и т.п.

Преимущества

Циклическое генерирование водорода кислорода исключает необходимость В использовании разделительных мембран, обеспечивает генерацию газов с высоким давлением в диапазоне от 0.1 МПа до 20.0 МПа и повышает надежность и безопасность эксплуатации электролизной установки. В разработанной конструкции ДЛЯ активации электродных материалов не используются редкоземельные металлы и металлы платиновой группы.

Рис. 1 Электролизер высокого давления производительностью 1.0 м³ водорода в час

Контакты

Соловей Виктор Васильевич

Институт проблем машиностроения им. А.Н. Подгорного НАН Украины

Тел: +38 (0572) 349-47-48; E-mail: solovey@ipmach.kharkov.ua

ЭНЕРГОСБЕРЕЖЕНИЕ С ИСПОЛЬЗОВАНИЕМ ПАРОВЫХ ТУРБИН МАЛОЙ МОЩНОСТИ, В ТОМ ЧИСЛЕ НА НИЗКОКИПЯЩИХ РАБОЧИХ ТЕЛАХ (НРТ)

Предназначение

Для модернизации энергоузлов предприятий с целью повышения их технико-экономических показателей. Методика включает:

- анализ потоков энергоносителей;
- разработку перспективных вариантов энергосберегающих решений;
- технико-экономическое обоснование (ТЭО);
- анализ инвестиционной привлекательности перспективных вариантов решений.

Преимущества

Турбины на НРТ имеют ряд преимуществ:

- высокий внутренний КПД (~85 %);
- большой гарантированный срок работы
 без ремонта (50 тыс. часов);
- изготавливаются из обычных материалов;
- компактны, имеют небольшие габариты воздушного конденсатора;
- эффективно работают в широкомдиапазоне нагрузок (до 10 % номинального);
 - отсутствует стояночная коррозия и эрозионный износ лопаток.

Рис. 1 Блочная турбоустановка на НРТ мощностью 50 кВт (Инфинити Турбин, США)

Контакты

Сенецкий Александр Владимирович

Институт проблем машиностроения им. А.Н. Подгорного НАН Украины

Тел: +38 (0572) 349-47-42; E-mail: senetskyi@ipmach.kharkov.ua

ИНДИКАТОР ТРЕЩИН ИТ – 22

Предназначение

Предназначен для обнаружения поверхностных трещин, раковин, расслоений и других дефектов в металлических изделиях.

Преимущества

По сравнению с аналогами прибор прост в эксплуатации и на порядок дешевле.

Рис. 1 Индикатор трещин ИТ – 22

Контакты

Полищук Олег Федорович

Институт проблем машиностроения им. А.Н. Подгорного НАН Украины

Тел: +38 (0572) 349-47-55; E-mail: shulzh@ipmach.kharkov.ua

КОМПЛЕКС ПРОГРАММ ДЛЯ РАСЧЕТА И ПРОЕКТИРОВАНИЯ ПРОТОЧНЫХ ЧАСТЕЙ ПАРОВЫХ, ГАЗОВЫХ И ГИДРАВЛИЧЕСКИХ ЭНЕРГЕТИЧЕСКИХ УСТАНОВОК

Предназначение

Комплекс программ предназначен для проектирования проточных частей паровых, газовых и гидравлических энергетических установок с помощью методов аналитического профилирования и математического моделирования пространственных вязких турбулентных течений. Комплекс программ может иметь интерес для предприятий энергетического машиностроения, авиационного газотурбостроения, для установок комплексной переработки и транспортировки газа.

Преимущества

Разработанный комплекс программ позволяет обеспечить высокий уровень эффективности проточных частей, сократить время проектирования, и по всем основным показателям лучше, чем существующие в Украине аналоги.

Рис. 1 Рабочее колесо турбины турбодетандера МТДА-3,0-10,4-МП-У2

Контакты

Русанов Андрей Викторович,

Русанов Р.А., Косьянов Д.Ю., Пащенко Н.В., Быков Ю.А.

Институт проблем машиностроения им. А.Н. Подгорного НАН Украины

Тел: +38 (0572) 349-47-24; E-mail: rusanov@ipmach.kharkov.ua

СПОСОБ КРИОГЕННОГО ПОЛУЧЕНИЯ ПОРОШКОВЫХ МЕТАЛЛИЧЕСКИХ КОМПОЗИЦИЙ ДЛЯ ВОССТАНОВЛЕНИЯ И УПРОЧНЕНИЯ МЕТАЛЛИЧЕСКИХ ПОВЕРХНОСТЕЙ

Предназначение

Предназначен для получения порошков металлических композиций заданной дисперсности. Такие порошки применяются в технологиях напыления при изготовлении или восстановлении термостойких и высоко нагруженных деталей узлов и механизмов.

Преимущества

Криогенный способ позволяет получать порошковые композишии заданной дисперсности различного компонентного состава, то есть из нескольких металлов и неметаллов одновременно. Возможность получения металлических, металлокерамических, углероднокомпозиций керамических И других открывает перспективы для дальнейшего развития конструкционного материаловедения.

Рис. 1 Криогенный аттритор

Контакты

Кравченко Олег Викторович

Институт проблем машиностроения им. А.Н. Подгорного НАН Украины

Тел.: +38(057)349-47-74; E-mail: krav@ipmach.kharkov.ua

МАГНИТНАЯ ОБРАБОТКА ВОДНЫХ СИСТЕМ В МАГНИТО ВИХРЕВЫХ ГИДРОДИНАМИЧЕСКИХ АКТИВАТОРАХ (МВГДА) С ЦЕЛЬЮ УДАЛЕНИЯ И ПРЕДОТВРАЩЕНИЯ НАКИПИ НА ТЕПЛООБМЕННЫХ ПОВЕРХНОСТЯХ

Предназначение

МВГДА предназначен для безреагентного предотвращения и удаления ранее образованной накипи.

Преимущества

Отличием аппаратов магнитной обработки МВГДА являются:

- 1. МВГДА имеет магнитную систему на постоянных магнитах с высокими техническими характеристиками по стабильности и долговечностью в широком диапазоне температур.
- 2. Базовая конструкция МВГДА обеспечивается датчиками магнитной индукции для контроля эффективности обработки.
- 3. Экраны магнитных систем позволяют снизить до минимума внешнее воздействие на рабочие настройки МВГДА в рабочих зазорах.
- 4. Возможно создание МВГДА с автоматическим, автомодельным и ручным регулированием магнитной индукции на постоянных магнитах в диапазоне рабочих температур до 230 $^{\circ}$ С и давлением до 30 атм.

Рис. 1 Аппарат МВГДА

Контакты

Михайленко Владимир Григорьевич

Институт проблем машиностроения им. А.Н. Подгорного НАН Украины

Тел: +38 (0572) 349-47-08; E-mail: port342017@gmail.com

МЕТОДИКА РАСЧЕТА НА ПРОЧНОСТЬ ЭЛЕМЕНТОВ МНОГОСЛОЙНОГО ОСТЕКЛЕНИЯ С ЭЛЕКТРООБОГРЕВОМ ДЛЯ СОВРЕМЕННЫХ САМОЛЕТОВ

Предназначение

Авиационная промышленность. Предлагается эффективная методика для анализа прочности остекления с электрообогревом для самолетов.

Преимущества

Позволяет сократить время на проектирование, значительно уменьшить затраты на проведение натурных экспериментов, повысить качество и надежность конструкции, обеспечить безопасность и необходимые условия работы экипажа самолета.

Основное отличие OT существующих методик - полнота и точность учета всех основных эксплуатационных режимов работы остекления, оригинальная математическая модель многослойного остекления, уточнена математическая модель столкновения остекления с птицей.

Рис. 1 Элемент остекления ТСК 008У самолета АН-148

Контакты

Сметанкина Наталья Владимировна

Институт проблем машиностроения им. А.Н. Подгорного НАН Украины

Тел: +38 (0572) 349-47-19; +38(067)95-706-94; E-mail: nsmet@ipmach.kharkov.ua

МЕТОДИКА СИСТЕМНОЙ ДИАГНОСТИКИ ЭНЕРГЕТИЧЕСКОЙ ЭФФЕКТИВНОСТИ ПАРОКОМПРЕССОРНЫХ ХОЛОДИЛЬНЫХ ТЕПЛОНАСОСНЫХ УСТАНОВОК

Предназначение

Методика может быть использована в расчетном комплексе системы мониторинга действующих теплонасосных и холодильных установках с целью повышения их энергетической эффективности путем термоэкономической оптимизации и модернизации оборудования.

Преимущества

В отличие от традиционного технико-экономического анализа разработанная методика позволяет выявить причины возникновения аномалий работе каждого элемента системы и оценить их влияние на приводную энергию компрессора, рассчитать монетарную стоимость термодинамических потерь определением их вклада в общую стоимость холода или теплоты, вырабатываемой установкой.

Рис. 1 Внедрение результатов модернизации аммиачной холодильной установки на Пирятинском сырзаводе по предложенной методике

Контакты

Харлампиди Дионис Харлампиевич

Институт проблем машиностроения им. А.Н. Подгорного НАН Украины

Тел: +38 (0572) 349-47-69; E-mail: kharlampidi@ipmach.kharkov.ua

МОДЕЛЬНЫЕ ИСПЫТАНИЯ РЕАКТИВНЫХ ГИДРОМАШИН НА ЭНЕРГОКАВИТАЦИОННЫХ СТЕНДАХ

Предназначение

В состав лаборатории гидравлических машин входят два замкнутых гидродинамических стенда ЭКС-15 и ЭКС-30, предназначенные для:

- проведения комплексных экспериментальных исследований при создании высокоэффективных проточных частей гидромашин;
- проведения научно-исследовательских работ по изучению рабочего процесса в гидромашинах;
- приемо-сдаточных испытаний вертикальных реактивных гидравлических машин всех типов.

Преимущества

Гидродинамические стенды по своим параметрам и оборудованию являются уникальным сооружением, не имеющим аналогов в Украине. Это подтверждается выполненными работами по метрологической аттестации и поверке оборудования стендов и градуировочной установки УГ-1.

Рис. 1 Модельный блок поворотно-лопастной гидротурбины ПЛ30, который установлен на энергокавитационном стенде ЕКС-15

Контакты

Агибалов Евгений Сергеевич, Сухоребрый Петр Николаевич Институт проблем машиностроения им. А.Н. Подгорного НАН Украины Тел: +38 (0572) 349-47-93; E-mail: agibalov@ipmach.kharkov.ua

МЕТОД ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ ПРИМЕНЕНИЯ МОТОРНЫХ БИОТОПЛИВ

Предназначение

Для улучшения экономических и экологических показателей двигателей внутреннего сгорания.

Преимущества

Малозатратный метод адаптации обеспечивает эффективную работу двигателей с искровым зажиганием на биотопливе и не требует установки дополнительного оборудования на автомобиль и не требует дополнительной сертификации.

Рис. 1 Общий вид модернизированного автомобильного двигателя MEM3-307.1 с искровым зажиганием

Контакты

Левтеров Антон Михайлович

Институт проблем машиностроения им. А.Н. Подгорного НАН Украины

Тел: +38 (0572) 349-47-02;; E-mail: dppp@ipmach.kharkov.ua

СОВЕРШЕНСТВОВАНИЕ УСТАНОВКИ НИЗКОТЕМПЕРАТУРНОЙ ПЕРЕРАБОТКИ ПРИРОДНОГО ГАЗА

Предназначение

Предлагается усовершенствование установки низкотемпературной переработки природного газа (НППГ) для месторождений с разнонапорными скважинами. В типичную установку НППГ вводится дополнительная турбодетандерная установка. В последней избыточное давление природного газа из высоконапорных скважин используется в турбодетандере, что приводит в действие компрессор, который служит для повышения давления газа низконапорных скважин. Усовершенствованная установка содержит входные коллекторы; сепараторы; турбодетандеры; компрессоры; рекуперативный теплообменник.

Преимущества

Установка позволяет улучшить качество газа, который транспортируется, продлить срок эксплуатации без месторождения дожимной использования компрессора. Срок окупаемости дополнительного оборудования ~2 года.

Рис. 1 турбодетандер производства ПАО "Турбогаз", г. Харьков

Контакты

Русанов Андрей Викторович,

Русанов Р.А., Косьянов Д.Ю., Пащенко Н.В., Быков Ю.А.

Институт проблем машиностроения им. А.Н. Подгорного НАН Украины

Тел: +38 (0572) 349-47-24; E-mail: rusanov@ipmach.kharkov.ua

УСТРОЙСТВО КОНТРОЛЯ КАЧЕСТВА ПАЙКИ СОЕДИНЕНИЙ "ГИЛЬЗА-ОБМОТКА СТАТОРА" СИНХРОННЫХ ГЕНЕРАТОРОВ

Предназначение

Устройство предназначено для контроля степени пропаяности (в процентах) соединений "гильза-обмотка статора" синхронных генераторов, важного параметра, который влияет на надежность.

Преимущества

Гибкий алгоритм работы устройства позволяет настраивать его параметры в зависимости от задач контроля.

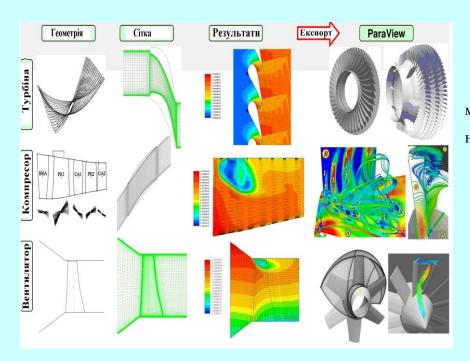
Рис. 1 Устройство контроля

Контакты

Полищук Олег Федорович

Институт проблем машиностроения им. А.Н. Подгорного НАН Украины

Тел: +38 (0572) 349-47-14; E-mail: polischuk@ipmach.kharkov.ua


ПРОГРАММНЫЙ КОМПЛЕКС ДЛЯ РАСЧЕТА АЭРОУПРУГИХ КОЛЕБАНИЙ РАБОЧИХ ЛОПАТОК ОСЕВОЙ ТУРБИНЫ И КОМПРЕССОРА

Предназначение

Программные комплексы могут использоваться:

- для расчета трехмерного потока газа через ступень (отсек) турбомашины с учетом вращения рабочего колеса и колебаний лопаток под действием нестационарных сил (без разделения нестационарных эффектов, вызванных внешней неравномерностью потока и колебаниями лопаток);
- для прогнозирования автоколебаний и флаттера рабочих лопаток.

Программные комплексы могут быть использованы в конструкторских бюро и предприятиях, которые проектируют и изготавливают паро - и газотурбинное оборудование энергетического машиностроения, авиационное газотурбостроение.

Преимущества

Разработка имеет мировой приоритет. аналогов нет.

Рис. 1 Результаты расчетов с помощью программных комплексов

Контакты

Гнесин Виталий Исаевич, Колодяжна Любовь Владимировна Институт проблем машиностроения им. А.Н. Подгорного НАН Украины Тел: +38 (0572) 349-47-27; E-mail: gnesin@ipmach.kharkov.ua

СПОСОБ БЕССТОЧНОЙ ВОДООЧИСТКИ

Предназначение

Предназначен для получения из загрязненной сточной воды такой воды, которая пригодна для использования в питьевых и технических целях и питания прямоточных энергетических котлов.

Преимущества

- основные примеси из воды выделяются в виде товарных продуктов, пригодных к использованию в энергетике, производстве стройматериалов, коммунальном хозяйстве и других отраслях;
- широкое использование ресурсосберегающих электромембранных методов регенерации и умягчения растворов с применением запатентованных элементов оборудования существенно уменьшает расходы энергоресурсов;
- модернизация установок обратноосмотического обессоливания/концентрации растворов повышает срок службы мембран до 5-10 лет;
- пирокавитационная обработка жидких остатков, после удаления минеральных солей, позволяет утилизировать органические примеси, содержащиеся в стоках, для изготовления эмульсионных топлив.

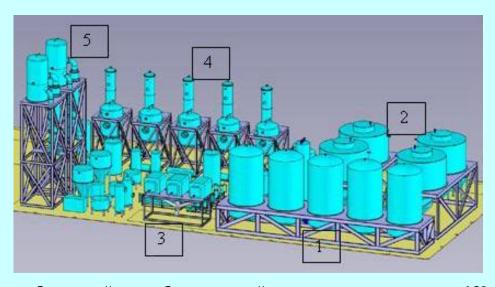


Рис. 1 Вид цеха бессточной переработки шахтной воды производительностью 150 м3/час

Контакты

Михайленко Владимир Григорьевич

Институт проблем машиностроения им. А.Н. Подгорного НАН Украины

Тел: +38 (0572) 349-47-08; E-mail: port342017@gmail.com

СПОСОБ И ОБОРУДОВАНИЕ ДЛЯ КОМПЛЕКСНОГО ОБЕЗЗАРАЖИВАНИЯ ВОДЫ

Предназначение

Предназначено для практически полного уничтожения патогенных микроорганизмов.

Преимущества

- оптимальная гидродинамика потока обеспечивает равномерность облучения различных слоев воды;
- одном реакторе установки результате объединения двух механизмов антибактериального действия генерируется третий механизм: В кавитационных воздействием пузырьках под ультрафиолетового излучения производятся активные радикалы гидроксильной группы (OH),атомарный кислород 030H мощнейшие окислители, завершающие обеззараживание.

Рис. 1 Установка для комплексного обеззараживания воды

Контакты

Михайленко Владимир Григорьевич

Институт проблем машиностроения им. А.Н. Подгорного НАН Украины

Тел: +38 (0572) 349-47-08; E-mail: port342017@gmail.com

ТЕХНОЛОГИЯ КОМПЛЕКСНОГО ВОДОРОДНОГО ТЕРМОБАРОХИМИЧЕСКОГО ВОЗДЕЙСТВИЯ НА ПРИЗАБОЙНУЮ ЗОНУ ПРОДУКТИВНОГО ПЛАСТА

Предназначение

Предназначена для интенсификации добычи углеводородов из проблемных нефтяных, газовых и газоконденсатных скважин, в которых за счет кольматации призабойной зоны пласта, уменьшился дебит.

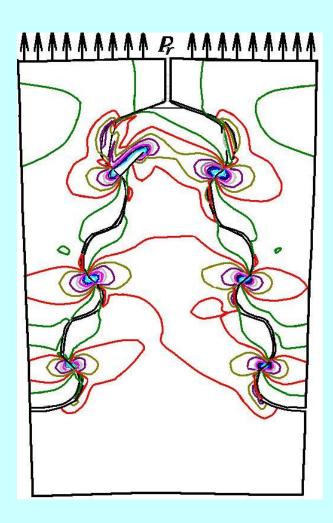
Преимущества

Высокая эффективность предлагаемой технологии достигается 3a счет использования химически активного водорода на разных стадиях термохимического обработки процесса при забойной зоны пласта. Кроме того, по сравнению с другими методами интенсификации добычи углеводородов (кислотная, щелочная, тепловая обработки скважин) представленная технология является комплексной. В ней сочетаются как тепловой и кислотный влияния на пласт, так и водородный.

Рис. 1 Схема реализации технологического процесса

Контакты

Кравченко Олег Викторович


Институт проблем машиностроения им. А.Н. Подгорного НАН Украины

Тел.: +38(057)349-47-74; E-mail: <u>krav@ipmach.kharkov.ua</u>

МЕТОДИКА ОЦЕНКИ ТРЕЩИНОСТОЙКОСТИ ВЫСОКОТЕМПЕРАТУРНЫХ ЭЛЕМЕНТОВ ЭНЕРГЕТИЧЕСКОГО ОБОРУДОВАНИЯ В УСЛОВИЯХ МАЛОЦИКЛОВОЙ УСТАЛОСТИ И ПОЛЗУЧЕСТИ

Предназначение

Предназначена для определения ресурса элементов енергомашин с выявленными или гипотетическими трещинами.

Преимущества

Учитывается влияние эксплуатационных и конструктивных факторов на долговечность элементов энергооборудования.

Рис. 1 Напряженное состояние в замковом соединении при наличии трещины

Контакты

Мележик Ирина Ивановна

Институт проблем машиностроения им. А.Н. Подгорного НАН Украины

Тел: +38 (0572) 349-47-55; E-mail: shulzh@ipmach.kharkov.ua