

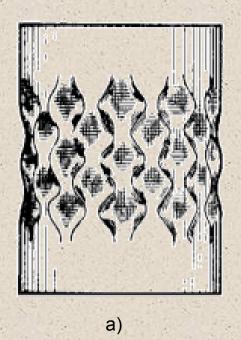
СРАВНЕНИЕ И АНАЛИЗ РЕЗУЛЬТАТОВ РАСЧЕТА УСТОЙЧИВОСТИ ГЛАДКОЙ ЦИЛИНДРИЧЕСКОЙ ОБОЛОЧКИ ПРИ ДЕЙСТВИИ ОСЕВОЙ СЖИМАЮЩЕЙ СИЛЫ С ПРИМЕНЕНИЕМ РАЗЛИЧНЫХ ТИПОВ ЭЛЕМЕНТОВ ПРИ ПОСТРОЕНИИ КОНЕЧНО-ЭЛЕМЕНТНОЙ МОДЕЛИ

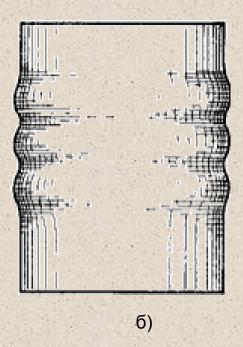
ВВЕДЕНИЕ

В настоящее время при расчетах на прочность активно применяется метод конечных элементов и основанные на нем программные комплексы ANSYS и NASTRAN. Проведение расчетов с использованием данных комплексов требует построения адекватной конечно-элементной (КЭ) модели. При построении КЭ-модели перед расчетчиком стоит задача выбора типа используемых конечных элементов для решения поставленной задачи с учетом возможностей имеющейся вычислительной техники и срока выполнения расчета.

В ракетной технике типовым силовым элементом конструкции является гладкая оболочка, широко применяемая в конструкциях баков, переходных отсеков и головных частях. Определяющим критерием обеспечения прочности гладкой цилиндрической оболочки является устойчивость.

В данном докладе представлено сравнение результатов расчета устойчивости гладкой цилиндрической оболочки средней длины при действии осевой сжимающей силы с применением различных типов элементов при построении конечно-элементной модели. Проведен сравнительный анализ результатов расчета устойчивости оболочки при действии осевой сжимающей силы, полученных при моделировании [3, 4] оболочечными элементами (Plate), твердотельными объемными элементами в форме параллелепипеда (Solid Hexa), твердотельными объемными элементами в форме тетраэдра (Solid Tetra) и инженерным методом расчета [1], апробированным в ходе многочисленных экспериментов. При расчете методом конечных элементов использовался программный комплекс MSC.NASTRAN.




Исходные данные

Параметры оболочки: Радиус оболочки R = 120 см; Высота оболочки I = 600 см; Толщина оболочки δ = 1 см;

Материал оболочки 2219-Т851: Модуль упругости $E = 745400 \text{ кгс/см}^2$; Коэффициент Пуассона $\mu = 0,33$; Предел прочности $\sigma_B = 4300 \text{ кгс/см}^2$; Предел текучести $\sigma_{0,2} = 3200 \text{ кгс/см}^2$; Относительное удлинение $\delta = 8$ %.

Для корректного анализа полученных результатов коэффициент устойчивости k принимался 0,605, что соответствует идеальной оболочке [1].

Формы потери устойчивости цилиндров при осевом сжатии [1]: а – несимметричная; б – осесимметричная

Оболочка средней длины. Выполняются следующие условия:

$$10*\sqrt{R*\delta}=110~{
m cm}< l=600~{
m cm}< 6*R\sqrt{rac{R}{\delta}}=7887~{
m cm}$$
 $100<rac{R}{\delta}=120<1000$

Конечно-элементная модель

КЭ модель Plate

вариант 1

Количество элементов 4001:

- элементов Plate 4000 (50 по вертикали, 80 по окружности);
- элементов Rigid 1 Размер элемента Plate:
- высота h = 12 см,
- ширина b = 9,3831 см;
- толщина δ = 1 см

вариант 2

Количество элементов 480001:

- элементов Plate 480000 (600 по вертикали, 800 по окружности);
- элементов Rigid 1

Размер элемента Plate:

- высота h = 1 см,
- ширина b = 0,9385 см;
- толщина δ = 1 см

Оболочка моделировалась по средней линии

КЭ модель Solid Tetra

вариант 1

Количество элементов 42961:

- элементов Solid Tetra 42960 (50 по вертикали, 80 по окружности);
- элементов Rigid 1

Размер элемента Solid Tetra:

- высота h = 12 см.
- ширина $b_1 = 9,4224$ см; $b_2 = 9,3438$ см;
- толщина δ = 1 см

вариант 2

Количество элементов 5693121:
• элементов Solid Tetra – 5693120

- (600 по вертикали, 800 по окружности);
- элементов Rigid 1

Размер элемента Solid Tetra:

- высота h = 1 см,
- ширина $b_1 = 0.9425$ см; $b_2 = 0.9346$ см;
- толщина б = 1 см

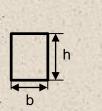
КЭ модель Solid Hexa вариант 1 вариант 2

Количество элементов 4001:

- элементов Solid Hexa 4000
 (50 по вертикали, 80 по окружности);
- элементов Rigid 1

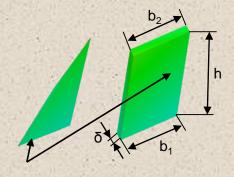
Размер элемента Solid Hexa:

- высота h = 12 см,
- $b_1 = 9,4224$ см; $b_2 = 9,3438$ см;
- толщина δ = 1 см


Количество элементов 480001:

- элементов Solid Hexa 480000 (600 по вертикали, 800 по окружности);
- элементов Rigid 1 Размер элемента Solid Hexa:
- высота h = 1 см,
- ширина $b_1 = 0.9425$ см; $b_2 = 0.9346$ см;
- толщина δ = 1 см

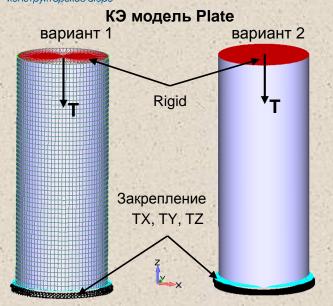
КЭ модель Веат

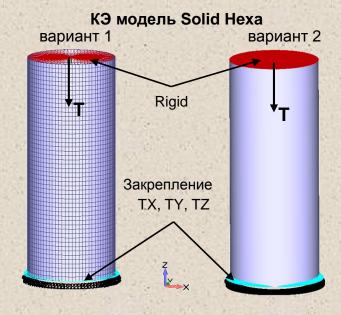

Количество элементов 50 Размер элемента Beam:

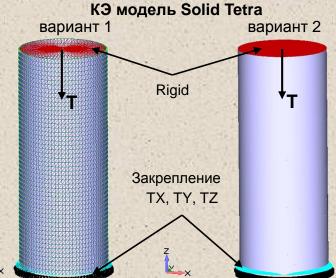
- высота h = 12 см,
- радиус оболочки = 120 см;
- толщина δ = 1 см

K9 Plate

K9 Solid Hexa




K9 Solid Tetra


ЮЖНОЕ

Конечно-элементная модель

Условия нагружения и граничные условия

Результаты расчета устойчивости

Метод расчета		n	T _{kr} ,	σ ^p , κгс/см ²		K
			TC	$\sigma_{max}^{}p}$	$\sigma_{\rm cp}^{\ \ p}$	K _{cx}
Инженерный метод	Оболочка		2833,509		0,00133	
	Стержень**		21158,160		0,00133	-
КЭ модель Plate	вариант 1	4001	2855,176	0,00145	0,00133	1,008
	вариант 2	480001	2813,439	0,00150	0,00133	0,993
КЭ модель Solid Hexa	вариант 1	4001	3067,148	0,00135	0,00133	1,082
	вариант 2	480001	2826,560	0,00134	0,00133	0,998
КЭ модель Solid Tetra	вариант 1*	42961	24498,388	0,00133	0,00133	8,646
	вариант 2	5693121	3822,662	0,00161	0,00133	1,349
КЭ модель Веат**		50	21819,300	2 4	0,00133	1,031

Примечание – В таблице приняты следующие обозначения:

n - количество элементов в модели;

T_{kr} – критические значения осевой сжимающей силы;

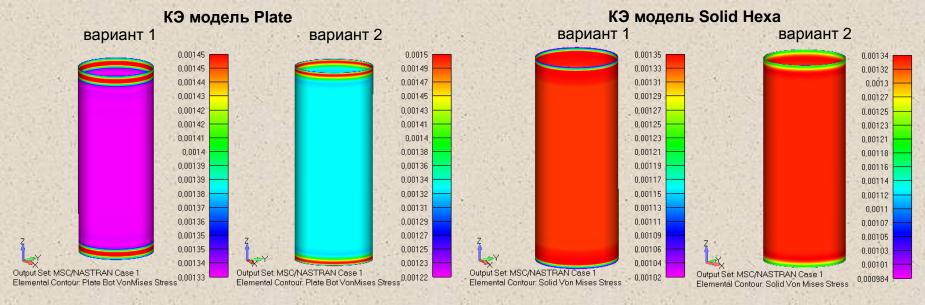
 $\sigma_{\text{max}}{}^{\text{p}}$ – максимальные расчетные напряжения по Мизесу в районе торцов оболочки;

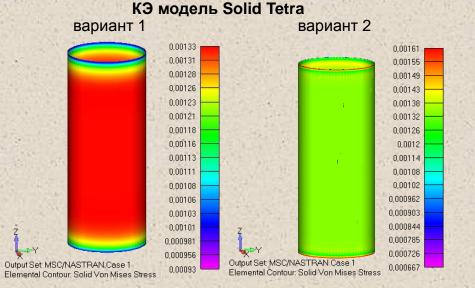
 $\sigma_{cp}{}^{p}$ – расчетные напряжения, возникающие в середине оболочки (в сечении равноудаленном от торцов);

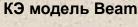
 $K_{\rm cx}$ – коэффициент сходимости результатов расчета различными методами, определяющийся по формуле:

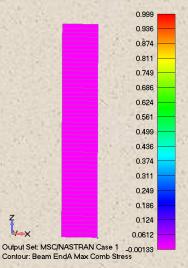
$$K_{cx} = T_{kr}^{i}/T_{kr}^{uh.}$$
, где

 $\mathsf{T}_{\mathsf{kr}}^{\ \ \mathsf{i}}$ – критические значения осевой сжимающей силы в і-том расчете;

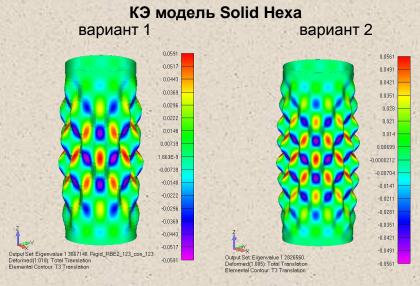

T_{кг}^{ин.} – критические значения осевой сжимающей силы, полученные с использованием инженерного метода расчета;

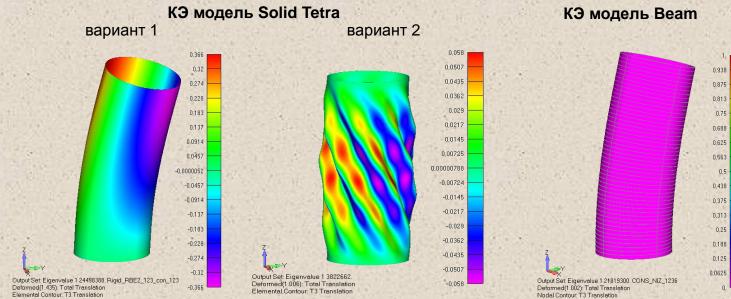

- * результаты расчета устойчивости в случае «КЭ модель Solid Tetra, вариант 1» показали, что расчет проводился для сжатого стержня (задача Эйлера).
- ** сравнение и анализ результатов расчета, полученных по «КЭ модель Веат», проводится с аналитическим расчетом стержня [2].




Результаты расчета устойчивости

Распределение напряжений (кгс/см²) в оболочке при действии единичной силы





Результаты расчета устойчивости

Формы потери устойчивости

НОЖНОЕ КОНСТРУКТОРСКОЕ БІОРО

Анализ результатов

- 1. Расчетные напряжения в середине оболочки (в сечении равноудаленном от торцов) одинаковы для всех вариантов расчета.
- Построение расчетной модели с использованием конечных элементов типа Plate приводит к удовлетворительной сходимости результатов расчета устойчивости (погрешность менее 1%). При сопоставимом соотношении сторон элемента к его толщине отмечено:

 □ увеличение напряжений в районе торцов оболочки на 3%;
 □ изменение формы потери устойчивости с осесимметричной на несимметричную.

 Построение расчетной модели с использованием конечных элементов типа Solid Hexa приводит к
- 3. Построение расчетной модели с использованием конечных элементов типа Solid Hexa приводит к удовлетворительной сходимости результатов расчета устойчивости (погрешность менее 1%) при сопоставимом соотношении сторон элемента к его толщине, и завышению значения критической силы (погрешность ≈ 8%) при соотношении ≈ 10. Форма потери устойчивости несимметричная.
- 4. Построение расчетной модели с использованием конечных элементов типа Solid Tetra приводит к неудовлетворительной сходимости результатов расчета устойчивости. При сопоставимом соотношении сторон элемента к его толщине:
 - □ завышение значения критической силы составляет ≈ 35%;
 - □ форма потери устойчивости не соответствует классической, приведенной в [1];
 - □ значения напряжений в районе торцов незначительно отличаются (7 11%) от напряжений, полученных при расчете с использованием элементов Plate, что не дает возможности обнаружить степень неточности конечно-элементной сеткипо результату расчета прочности.
- 5. Применение расчетной модели с использованием конечных элементов типа Solid Tetra, при соотношении сторон элемента к его толщине ≈ 10, приводит к расчету сжатого стержня в Эйлеровской постановке.

ВЫВОДЫ

Наиболее удовлетворительная сходимость результатов расчета устойчивости достигается с применением в расчетной модели конечных элементов типа Plate. Влияние соотношения стороны элемента к его толщине незначительно, что позволяет использовать меньшее количество элементов при построении конечно-элементной модели и, соответственно, требует меньше вычислительных мощностей и времени на расчет.

Построение расчетной модели с использованием конечных элементов типа Solid Hexa также приводит к удовлетворительной сходимости результатов расчета устойчивости, при условии сопоставимого соотношения сторон элемента к его толщине. При не соблюдении данного условия рекомендуется проводить дополнительный расчет устойчивости с использованием инженерных методов расчета.

В дальнейшем, рекомендуется провести дополнительный анализ влияния соотношения сторон элемента к его толщине в диапазоне от 1 до 10 для элементов типа Solid Hexa.

Применение расчетной модели, построенной с использованием конечных элементов типа Solid Tetra, для расчета устойчивости нецелесообразно.

Следует отметить, что конструкторские 3-D модели (построенные в среде Autodesk Inventor и т.д.) не позволяют напрямую перейти к конечно-элементному разбиению другими типами конечно-элементного анализа кроме как Solid Tetra. Для использования элементов типа Plate и Solid Hexa необходима подготовка расчетной модели.